NUKLEONIKA 2011, 56(4):253-257

 


CLASTOGENIC EFFECTS IN HUMAN LYMPHOCYTES EXPOSED TO LOW AND HIGH DOSE RATE X-RAY IRRADIATION AND VITAMIN C



Maria Konopacka, Jacek Rogoliński

Center for Translational Research and Molecular Biology of Cancer,
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch,
15 Wybrzeże Armii Krajowej Str., 44-100 Gliwice, Poland



In the present work we investigated the ability of vitamin C to modulate clastogenic effects induced in cultured human lymphocytes by X-irradiation delivered at either high (1 Gy/min) or low dose rate (0.24 Gy/min). Biological effects of the irradiation were estimated by cytokinesis-block micronucleus assay including the analysis of the frequency of micronuclei (MN) and apoptotic cells as well as calculation of nuclear division index (NDI). The numbers of micronucleated binucleate lymphocytes (MN-CBL) were 24.85 ± 2.67% and 32.56 ± 3.17% in cultures exposed to X-rays (2 Gy) delivered at low and high dose rates, respectively. Addition of vitamin C (1–20 µg/ml) to the medium of cultures irradiated with the low dose rate reduced the frequency of micronucleated lymphocytes with multiple MN in a concentration-dependent manner. Lymphocytes exposed to the high dose rate radiation showed a U-shape response: low concentration of vitamin C significantly reduced the number of MN, whereas high concentration influenced the radiation-induced total number of micronucleated cells insignificantly, although it increased the number of cells with multiple MN. Addition of vitamin C significantly reduced the fraction of apoptotic cells, irrespective of the X-ray dose rate. These results indicate that radiation dose rate is an important exposure factor, not only in terms of biological cell response to irradiation, but also with respect to the modulating effects of antioxidants.


Close X