NUKLEONIKA 2012, 57(4):601-606

 


SOURCE APPORTIONMENT OF THE PM10 FRACTION OF PARTICULATE MATTER COLLECTED IN KRAKÓW, POLAND



Lucyna Samek

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,
al. A. Mickiewicza 30, 30-059 Krakow, Poland



Samples of PM10 fraction of air particulates were collected during the winter of 2010 at two different sites in the City of Kraków, Poland. One site was located nearby a steel mill (Nowa Huta district) and the second one was situated at a distance of 10 km from the first site (Krowodrza district). The measured mass concentrations of PM10 fraction were in the range of 33 to 358 µg/m3. They exceeded the permissible daily limit value of 50 µg/m3. The Voivodship Inspectorate for Environmental Protection in Kraków was in charge of collecting samples as well as determining mass concentrations. Assessment of elemental concentrations and statistical analyses were performed at the University of Science and Technology in Kraków. Mean concentrations of Ti, Cu, Br and Pb were almost the same at both sites, while those of K, Ca and Zn were two times higher at Nowa Huta than at Krowodrza. Cr, Mn and Fe mass concentrations were also higher at Nowa Huta site; the values were a factor of three higher for Cr and Mn and factor of four for Fe. Factor analysis (FA) and multilinear regression analysis (MLRA) were used to determine source contributions to ambient PM10. The measurements were based on PM10 composition data which included elemental concentrations. Local combustion, industry and other, not identified sources, such as secondary aerosols, were the factors that highly contributed to the pollution of PM10 during winter time. For the site at Nowa Huta 53.1% of pollution was attributable to combustion and traffic, 28.5% was due to industry and wood combustion, and 18.3% were not identified. For the Krowodrza site, industry and wood combustion contributed 46.1%, combustion and traffic 50.4% and other, not identified sources 3.5% of the total PM10. Examination of meteorological data suggested that the concentration of potassium was inversely proportional to ambient air temperature at both sites. A wood combustion was identified as possible source of potassium in PM10.


Close X