Carbonates and oxalates are the final products of oxidation of propionates with permanganate and manganate in alkaline medium [14]. This reaction drew therefore attention of radiochemists as early as in 1942 [11] in view of the possibility of using 1-, 2- and 3-11C and 14C labelled propionates that the radiocarbon found in carbonates (or in oxalates) originates from different positions of propionate and only the preferential transformation of a given carbon atom in the propionate into carbonate or oxalate can be established [3, 9, 15].

Subsequent kinetic studies indicated that, in spite of complex distribution of radioactivity between products of oxidation of propionate (P.), this reaction as such has a definite simple rate determining step and proceeds according to one mechanism in alkaline medium [17]. Investigation of the carbon-14 KIE in the oxidation of propionate 14C labelled in the alpha and beta positions indicated that rupture of the Cα-H bond is the rate determining step in the oxidation of P. with permanganate [20–22]. A substantial \((k_{12}/k_{14} - 1)\times 100 \approx 1/2(k_{12}/k_{14} - 1)\times 100 \approx 1/2(4.6 \pm 0.3)\) at 373 K. The possibility of extension of isotope ratio measurements, using modern double collector mass spectrometers, from geochemical, biomedical, agriculture and environmental research to carbon-13 isotope effects studies in chemical organic reactions is briefly discussed.

Key words carbon-13 • carbon-14 • fractionation • manganate • oxidation • permanganate • propionate
prompted us to investigate tritium and deuterium KIEs in the oxidation of tritium and deuterium labelled propionates. A very large deuterium kinetic isotope effect in the oxidation of \([2-\text{D}_2]\) propionate, \(\text{CH}_3\text{CD}_2\text{COONa}\), has been found. Its large temperature dependence revealed the tunnelling in the hydrogen transfer from the alpha carbon of propionate to the oxidizer especially pronounced in alkaline medium [16, 18, 19, 23]. Both the radiocarbon and hydrogen isotope effects solved the problem of rate determining step in the oxidation of propionate with Mn(VII) ad Mn(VI) in alkaline medium. But from experimental point of view both the above approaches require the access to a radioisotope laboratory and quite expensive isotopically labelled compounds.

In this study we attempted to determine the carbon-13 fractionation in the oxidation of propionate of natural isotopic composition with permanganate. Propionic acid has three different positions with three different sets of bonds around each carbon atom. At complete oxidation of \(P\) we obtained the average \((^{13}\text{C}/^{12}\text{C})\) carbon isotope ratio for all three carbons diluted by isotopic carbons from all "external" sources. Carbon dioxide obtained at partial oxidation of propionate should have different \((^{13}\text{C}/^{12}\text{C})\) ratio due to one primary \(^{13}\text{C}\) KIE caused by the rupture of the \(\text{C}_\alpha-\text{H}\) bond and due to the two secondary \(^{13}\text{C}\) KIEs caused by the [^{13}\text{C}] methyl and [^{13}\text{C}] carboxyl groups. The primary \(^{13}\text{C}\) KIE will result the carbon dioxide slightly depleted with \(^{13}\text{C}\). In the most favourable circumstances the non-homogeneous distribution of \(^{13}\text{C}\) between Me- and carboxyl groups might be balanced. The \((^{13}\text{C}/^{12}\text{C})\) ratio for \(\text{CH}_3\)- and -COO\(^\text{g}\) groups might depend on the method of synthesis of propionate and differ from C-13 equilibrium thermodynamic distribution which depends on the number and types of bonds at the isotopic carbon \(3(\text{C}-\text{H}) + 1(\text{C}-\text{C})\) bond in the Me-group, and the 2(\text{COO}\(^\text{g}\)) and 1(\text{C}-\text{C}) bond in -COO\(^\text{g}\) group]. The magnitude of the secondary \(^{13}\text{C}\) KIE highly depends on the structure of the transition state (T.S.). If 3(\text{C}-\text{H}) and 2(\text{COO}\(^\text{g}\)) bonds do not change in the T.S. then the S.KIE of \(^{13}\text{C}\) will be negligible. Weakening of these bonds will increase the S.\(^{13}\text{C}\) KIE. This experiment should show how much the above "man made" [7, 13] and "natural" complications perturb the final \(^{13}\text{C}\) isotope effect determination since the exact \(^{14}\text{C}\) KIE data are already known (S. denotes: secondary).

**Methods and results**

The natural abundance of carbon-13 is sufficiently large to notice its variations in the course of chemical reactions using modern isotope ratio mass spectrometers [1, 10] now widely available also in Europe [2, 5, 8, 12]. Nevertheless the mechanisms of organic reactions have been and are investigated using carbon-14 isotope effect methodology [4, 6] applying liquid scintillation counters for precise determinations of the specific activities of the \(^{14}\text{C}\) labelled substrates and products of organic reactions at different degrees of chemical conversion [22]. Having already in hands the \(^{14}\text{C}\) KIE data concerning the oxidation of propionates successively labelled with \(^{14}\text{C}\) in the \(\alpha\) and \(\beta\) positions with permanganate [20, 21] we decided to explore the possibility of determination of carbon-13 fractionation in the course of oxidation of propionate by measuring the mean carbon isotope ratios, \(R(^{13}\text{C}/^{12}\text{C})\), of the cumulative carbon of oxalates and carbones obtained at complete oxidation of propionate of natural isotopic composition and at partially known oxidations of propionate (at f<1). The determinations of the radiocarbon in carbonates and oxalates have been replaced in modern \(^{14}\text{C}\) KIE studies by measuring the radioactivity of the easy obtained in high purity crystalline organic derivatives of propionic acid [22]. To simplify the analytical procedure the carbon dioxide derived from all external sources was isolated first and its delta (PDB) determined in the blank experiment reproducing all the analytical steps applied in the actual isotope effect oxidation of propionate with permanganate (0.0319 mmoles of cumulative CO\(_2\) was derived with delta (PDB) equal to -18.33 and \(R(^{13}\text{C}/^{12}\text{C})\) equal to 0.01103122). This correction has been applied to carbon dioxide derived from carbonates and oxalates to obtain a correct value of degree of oxidation of propionate listed in column (4) of Table 1.

The \(\delta(\text{PDB})\) values listed in column (5) of Table 1 are the rough uncorrected values provided by a mass spectrometer. They are smaller (more negative) than \(\delta(\text{PDB}) = -34.66\) of carbon dioxide obtained at complete oxidation of propionate with permanganate and with "CrO\(_2\)H\(_2\)PO\(_4\)/Oleum" oxidizing solution, and indicate immediately that the heavier propionate molecules containing \(^{13}\text{C}\) are oxidized with smaller probability than the light P. molecules containing \(^{12}\text{C}\). They indicate also that the carbon-hydrogen bonds are weakened in the T.S. Nevertheless these \(\delta(\text{PDB})\) values are insufficient to draw more detail mechanistic conclusions concerning the interaction of the organic substrate with the inorganic oxidant. Permanganate can attack all three carbon atoms in propionate but the earlier kinetic studies of oxidation of propionate with permanganate at different temperatures resulted a straight line Arrhenius temperature dependence of the second order oxidation rate constants which indicates that the oxidation proceeds according to one mechanism. The subsequent \(^{14}\text{C}\) KIE determinations in the oxidation of propionate labelled with \(^{14}\text{C}\) at C-2 and C-3 positions successively showed that there is a substantial \(^{14}\text{C}_\alpha\) KIE and the very small (secondary) \(^{14}\text{C}_\beta\) KIE. The above pure kinetic and kinetic isotope effect data have been interpreted as indicating that the initial rate determining oxidation step consists in the effective attack of the oxidizer at the alpha-carbon which results in rupture of the \(\text{C}_\alpha-\text{H}\) bond in the T.S. The subsequent steps are the fast ones and contribute to the actual distribution of \(^{14}\text{C}\) at \(^{12}\text{C}\) between products of the oxidation of propionate. Within this interpretation of kinetics and \(^{14}\text{C}\) KIEs the depletion of \(^{13}\text{C}\) in product carbon dioxide (listed in column (5)) is caused primarily by \(^{13}\text{C}\) KIE in the oxidation of the methylene group (or uniquely), augmented by small secondary \(^{12}\text{C}\) KIE of isotopic carbons located in the neighbouring methyl and carboxyl groups. In this introductory study only the isotopic composition of the total carbon dioxide obtained at complete and at partial oxidations of propionate has been determined. In the first approximation we assume that bonding at C-1 and at C-3 is not weakened (not changed) in the T.S. with respect to the initial state of the substrate and the carbon dioxide derived
from C-1 and C-3 has the same isotopic composition as in the substrate before its partial oxidation. We calculated the carbon isotope ratio \( R(^{13}\text{C}/^{12}\text{C}) \) of carbon dioxide derived from the methylene carbon at partial oxidations of propionate \( f<1 \) given in column (6) by correcting the measured values of \( \delta(PDB) \) given in column (5) by initial dilution with the carbon derived from cumulative external sources and by a subsequent twice dilution of the carbon dioxide corresponding to the methylene carbon with carbon dioxide derived from (C-1) and (C-3) positions. The corrected \( R(^{13}\text{C}/^{12}\text{C}) \) values given in column (6) were used to calculate the \(^{13}\text{C} \) KIEs given in column (7) with the equation (1)

\[
(k_{12}/k_{13}) = \frac{\ln[1-f(1+R_{so})/(1+R_{pf})]}{\ln[1-f(R_{pf}/R_{so})/(1+R_{pf})]}
\]

In the course of calculations of \( R \) values a relation:

\[
\delta(\text{‰}) = \left[\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1\right] \times 1000
\]

was applied as usually. The assessed \( k_{12}/k_{13} \) KIEs are in good agreement with \(^{14}\text{C} \) KIE.

The \(^{14}\text{C} \) KIE studies provide directly the magnitude of the isotope effect caused by the rupture of the carbon-hydrogen bond at the given labelled position in the molecule. But before starting the time consuming \(^{14}\text{C} \) KIE research requiring the synthesis of the needed \(^{14}\text{C} \) labelled compound preliminary \(^{13}\text{C} \) KIE study is sufficient to instruct the researcher about the magnitude of the \(^{14}\text{C} \) KIE expected or about the necessity of constructing a fully automatic apparatus to avoid manual operations and any contact of the alkaline medium with carbon dioxide containing air and other external sources of carbon dioxide. The necessity of the detailed chemical degradation of the given organic compound on the isotope effect level to reveal the actual distribution of \(^{13}\text{C} \) among all isotopically important positions is also a laborious task.

**Acknowledgments** This study was supported by the Polish State Committee for Scientific Research (KBN) Grant No. C-44/99, by the Ministry of Science and Technology of the Republic of Slovenia, by the J. Stefan Institute of Ljubljana and by the Faculty of Chemistry of Jagiellonian University. Carbon-14 isotope effect studies were supported by the Department of Chemistry and Biochemistry of the University of Arkansas during the visiting professorship of M.Z.

---

### Table 1. Carbon-13 isotope effect for oxidation of sodium propionate with permanganate.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>mmoles of substrate</th>
<th>Degree “f” of oxidation of propionate</th>
<th>Experimental ( R(^{13}\text{C}/^{12}\text{C}) ) α carbon isotope ratio</th>
<th>( k_{12}/k_{13} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. No.</td>
<td>Sodium propionate</td>
<td>Oxidizer</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>95.1°C</td>
<td>2.518</td>
<td>0.01061526 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0237</td>
</tr>
<tr>
<td>95.6/N-14</td>
<td>7.329</td>
<td>0.01060409 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0247</td>
</tr>
<tr>
<td>95.6/N-16</td>
<td>0.9035</td>
<td>0.01066222 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0215</td>
</tr>
<tr>
<td>90.2/N-3</td>
<td>1.5364</td>
<td>0.01060494 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0265</td>
</tr>
<tr>
<td>80.35/N-2</td>
<td>1.5822</td>
<td>0.01058011 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0300</td>
</tr>
<tr>
<td>15.3/N-1</td>
<td>2.6554</td>
<td>0.01052556 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0310</td>
</tr>
<tr>
<td>95.05/N-6</td>
<td>CH₃CD₂COONa</td>
<td>KMnO₄</td>
<td>0.0105670 (pf)</td>
<td>0.0108233 (so)</td>
</tr>
<tr>
<td></td>
<td>CH₃CD₂COONa</td>
<td>K₂MnO₄</td>
<td>3.1361</td>
<td>2.5723</td>
</tr>
<tr>
<td>95.6/N-13</td>
<td>2.1196</td>
<td>0.0105670 (pf)</td>
<td>0.01084766 (so)</td>
<td>1.0283</td>
</tr>
</tbody>
</table>

\( a \) \( \delta(PDB) \) of carbon dioxide obtained at partial (\( f<1 \)) oxidation of sodium propionate; (pf) – carbon isotope ratios corresponding to carbon dioxide derived from alpha carbon of propionate; (so) – initial mean carbon isotope ratio in propionate (calculated using mean \( \delta(PDB) \) equal -34.665). The \( \delta(PDB) \) values were determined by Europa Scientific 20-20 mass spectrometer with ANCA-TG preparation module operating in the Reactor Center of the J. Stefan Institute of Ljubljana. The detailed description of the experimental procedure used for partial oxidations of propionate and for quantitative extraction of cumulative carbon dioxide from the post reaction mixture in vacuum reactor is given in refs. [16, 18, 19].
References


