Dissolved and suspended forms of caesium-I37 in marine and riverine environments of the southern Baltic ecosystem

Danuta Knapińska-Skiba, Ryszard Bojanowski, Ryszard Piękoś

Abstract Dissolved and particulate activities of caesium-137 are presented for the coastal and open southern Baltic Sea waters, fluvial waters (the Vistula and Świna rivers) and lagoon waters (the Vistula Lagoon) during 1996–1999 and compared to those collected before the Chernobyl accident. ¹³⁷Cs was measured in the Baltic Sea waters at different depths as well as 0.2–0.3 m above the sea bed. In a layer of the Gdańsk Bay waters (the Gdańsk Deep location), extending from the surface down to 1–2 meters above the sea bed, the caesium-137 concentrations ranged between 57 and 66 Bq m⁻³ in 1999, whereas in the layer situated 0.2–0.3 m above the sea bed its concentration increased up to 87 Bq m⁻³. This phenomenon was also observed in 1994 and 1998. The concentrations of caesium-137 in riverine suspended particulate matter (r SPM) are lower than in the marine SMP (m SMP) and its activity attains respectively 36 and 222 Bq kg⁻¹ based on dry weight. The proportion of caesium-137 in the suspended form in the Baltic Sea waters does not exceed 2 per cent, while in the fluvial suspended form it is as high as 55 per cent.

Key words Baltic waters • dissolved form • fluvial waters • radiocaesium • suspended form

D. Knapińska-Skiba[⊠], R. Bojanowski Institute of Oceanology, Polish Academy of Sciences, 56 Powstańców Warszawy Str., 81-712 Sopot, Poland, Tel.: +48 58/ 551 72 81, Fax: +48 58/ 551 21 30, e-mail: skiba@iopan.gda.pl

R. Piękoś Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. J. Hallera Av., 80-416 Gdańsk, Poland

Received: 10 September 2001, Accepted: 12 March 2002

Introduction

Recent pollution level with caesium-137 in the Baltic Sea is dominated by atmospheric fallout, fluvial run-off and influx of oceanic waters from the North Sea. In addition, the North Sea waters are polluted with radioactive wastes released from nuclear fuel reprocessing plants in Sellafield (the United Kingdom) and La Hague (France) [4, 7]. The Chernobyl accident on April 26th, 1986 added to the atmosphere large amounts of radionuclides including the long-lived caesium-137. As much as 85 per cent of caesium-137 deposited in the Baltic Sea is of the Chernobyl origin. It is a predominant radionuclide responsible for the actual radioactive pollution level in the Baltic Sea waters [12].

Within the framework of the Helsinki Convention, the Baltic Sea waters have been monitored every year from the surface down to 1–2 meters above the sea bed for the contents of artificial radionuclides including caesium-137. However, this survey did not discriminate between dissolved and suspended forms of caesium-137 in the sea water and did not account for such water regions as lagoons and rivers feeding the southern Baltic Sea.

Hence the objective of this work was to estimate the contribution of the suspended and dissolved forms of caesium-137 in the Baltic Sea waters, river water and lagoon water and to determine its concentrations in water layers adjacent to the bottom (0.2-0.3 m above the sea floor). Further, its concentrations in the Baltic Sea waters before and after the Chernobyl accident have been compared.

Fig. 1. Sampling stations in the southern Baltic Sea in 1996–1999.

Materials and methods

Samples were collected during the cruises continued from 1996 through 1999 (Fig. 1). Water samples taken during 1996–1998 were filtered through Sartorius membrane filters (pore size 0.45 μ m), while those sampled in 1999 were filtered through Whatman GF/F glass microfibre filters. The filters together with suspended matter were dried at 60°C, kept in a desiccator for 1 h and weighed. The filtrate was acidified to pH 1–2 and a 10 mg of a natural carrier of caesium was added. After equilibration (for approx. 20 min), 1.2 g of ammonium phospho(V)dodecamolybdate(VI) (AMP) was added and the content was stirred for 20 min. After 24 h the liquid was decanted and the precipitate was chromatographed on a Bio-Rex 40 ion-exchange resin [1]. Following separation of accompanying ions (NH₄⁺, Na⁺, K⁺ and Rb⁺), caesium was eluted with 3 M hydrochloric acid.

The caesium-containing solution was then evaporated to dryness, digested and dissolved in dilute hydrochloric acid. From this solution caesium was precipitated as chloroplatinate, its yield was determined gravimetrically [1] and the β -radiation was counted in an apparatus housing a low-background Geiger-Müller multicounter (Risø, Denmark).

The suspended matter collected on the Sartorius and GF/F filters was transferred to Teflon evaporating dishes, 10 mg of the natural carrier of caesium was added and the sus-

pension was extracted twice with a hot 8 M nitric acid solution. The non-dissolved fraction was treated with 40% hydrofluoric acid in the presence of a fresh amount of the natural caesium carrier. The solvents from both fractions were evaporated, the residue was dissolved in dilute hydrochloric acid and radiocaesium was analyzed using standard radiochemical procedures [1] and beta counting. The accuracy of the method was assessed by replicate determinations of the certified reference material SD-N-1 (IAEA, Vienna), which had a certified concentration of 137 Cs of 13.32 Bq kg⁻¹. Six analyses of the standard gave a mean value of the 137 Cs concentration of 13.0 ± 0.8 Bq kg⁻¹.

Results and discussion

The results are summarized in Tables 1–6. They show the dissolved and suspended caesium-137 concentrations in many water types, including coastal and open sea waters, fluvial waters (the Vistula, Dead Vistula and Świna rivers) and the lagoon waters (the Vistula Lagoon). To date, no reports on pollution of the Vistula Lagoon waters with caesium-137 have been available.

The caesium-137 activities in the Baltic Sea measured from the surface down to 1–2 m above the sea bed tend to decrease with time. For instance, in the Gdańsk Bay (the Gdańsk Deep location) its concentrations in 1998 ranged

Area/Station	Date of sampling	Coordi	nates	Sampling depth (m)	Salinity (PSU)	^{137}Cs (Bq m ⁻³ ±1 σ^*)
Vistula river Mikoszewo Kiezmark	8.09.1996	54°20.4' 54°15.5'	18°56.5' 18°56.5'	0	0.47	1.6±0.1
Vistula river Świbno	8.09.1996	54°20.4'	18°56.1'	0	0.50	1.5 ± 0.1
Vistula Lagoon Kąty Rybackie	8.09.1996	54°20.2'	19°13.6'	0	2.19	3.6±0.1
Southern Baltic						
Karwia	5.10.1996	54°50.0'	18°11.2'	0	7.22	41±1
Hel	16.05.1996	54°36.1'	18°49.0'	0	NM	86±1
Sopot	21.02.1996	54°26.5'	18°34.2'	0	6.55	68±1
Sopot	30.05.1996	54°26.5'	18°34.2'	0	NM	76±1
Krynica Morska	10.05.1996	54°20.3'	19°27.0'	0	4.15	86±1

Table 1. Activity concentrationsof caesium-137 in the filteredsurface sea water samples takenfrom the southern Baltic Seaand Vistula river in 1996.

NM – not measured. * – the error represents counting error only.

Area/Station	Depth (m)	Date of sampling	Coordinates	Sampling depth (m)	Salinity (PSU)	¹³⁷ Cs (Bq m ⁻³ ±1σ)	Table 2. Activity conof caesium-137 insurface sea water san
Świna river							from the southern
Świnoujście	10	10.08.1997	53°54.1' 14°16.2	0	0.23	4.5 ± 0.1	and Swina fiver in 19
Pomeranian Bay (coast	t)						
ZP41	10	13.08.1997	53°56.6' 14°16.7	0	3.45	31±1	
ZP15	10	10.08.1997	53°57.6' 14°19.6	0	4.85	48±1	
ZP43	13	13.08.1997	54°05.3' 14°15.3	0	6.03	60 ± 1	
Pomeranian Bay (open)						
ZP61	17	12.08.1997	54°19.2' 13°57.6	0	4.46	83±1	
WZ	47	12.08.1997	54°49.1' 13°34.8	0	7.36	81±1	
ZP26	61	11.08.1997	54°37.7' 15°16.0	0	7.45	65±1	
ZP55	47	12.08.1997	54°46.0' 13°36.8	0	6.76	67±1	
Southern Baltic							
PII	18	17.08.1997	54°58.0' 16°42.0	0	NM	49±1	
PIII	41	17.08.1997	54°50.0' 18°40.0	0	6.37	73±1	
Vistula river mouth							
PVI	17	18.08.1997	54°23.5' 18°48.0	0	4.04	34±1	NM not measured

ctivity concentrations m-137 in the filtered a water samples taken southern Baltic Sea river in 1997.

from 55 to 76 Bq m⁻³ (67 \pm 8 (SD) Bq m⁻³ on average), whereas in 1999 they ranged from 57 to 66 Bq m⁻³ (61 ± 3 (SD) Bq m^{-3} on average) (cf. Tables 3 and 4).

The Vistula waters are considerably less polluted with caesium-137 than the Baltic Sea waters (the Gdańsk Bay location), respective concentrations in 1999 being 0.8 and 61 Bq m⁻³ (Table 4). The ¹³⁷Cs levels in Vistula waters declined rapidly from 25.8 Bq m⁻³ in 1989 to 1.5 Bq m⁻³ in 1995 [10, 11].

In seven Japanese rivers flowing far off industrial and municipal centres, the total ¹³⁷Cs levels during 1985–1987 were also low ranging between 0.063 and 1.89 Bq m^{-3} [3].

Again, the waters of the Świna river, connecting the Pomeranian Bay with the Szczecin Lagoon are more polluted than the Vistula waters on account of the so-called backwater of sea waters, and the caesium-137 concentration in them is as high as 4.5 Bq m⁻³ (Table 2). Similar ¹³⁷Cs levels (4.9-8.8 Bq m⁻³) were recorded in the 0-11 m column of the Szczecin Lagoon waters [12].

The caesium-137 activity in the Vistula Lagoon linked with the Baltic Sea through the Pilawa Straits attains a level of 3.6 Bq m⁻³, being one order of magnitude lower than that in the Baltic Sea waters (Table 1). The cleaning processes of caesium-137 occurring in the Baltic Sea

Area/Station	Depth (m)	Date of sampling	Coordinates	Sampling depth (m)	Salinity (PSU)	^{137}Cs (Bq m ⁻³ ±1 σ)
Dead Vistula river						
H14	6.1	10.09.1998	54°20.6' 18°49.4'	0	4.78	19±1
Vistula river+Vistula	a river mou	th				
H4	3.7	10.09.1998	54°21.9' 18°57.0'	0		
H6	8.6	10.09.1998	54°21.9' 18°57.4'	0	0.52	1.3 ± 0.1
Gdańsk Bay						
2	14.5	8.09.1998	54°22.6' 18°56.6'	0	NM	58 ± 1
				13	NM	78 ± 1
H2	14.5	10.09.1998	54°22.5' 18°57.9'	0	3.88	78±1
Southern Baltic						
8	109	9.09.1998	54°50.0' 19°19.5'	0	6.94	73±1
				30	6.89	76±1
				60	7.34	70 ± 1
				75	9.48	72 ± 1
				90	11.23	62 ± 1
				107	11.77	55 ± 1
				108	11.99	62 ± 1
				108.5	11.99	62±1
				108.8	11.99	87±1
9	78	10.09.1998	55°20.0' 18°00.3'	0	7.04	75±1
				30	6.91	78±1
				50	7.17	81±1
				70	10.42	62±1
				73	11.85	61±1
				74	12.41	54±1
				75	12.51	53±1
				77.8	12.51	62 ± 1
11	91.5	10.09.1998	55°09.1' 15°55.1'	91.3	NM	52 ± 1

Table 3. Activity concentrations caesium-137 in the filtered a water samples taken from e southern Baltic Sea and istula river in 1998.

Table 4. Activity concentrations
of caesium-137 in the filtered
sea water samples taken from
the southern Baltic Sea and
Vistula river in 1999.

Area/Station	Depth (m)	Date of sampling	Coord	linates	Sampling depth (m)	Salinity (PSU)	$(Bq m^{-3} \pm 1\sigma)$
Southern Baltic							
10	112	20.05.1999	54°49.9'	19°19.6'	0	6.62	60±1
					30	7.15	66±1
					60	7.22	63±1
					75	8.93	66±1
					90	10.95	60 ± 1
					110	11.58	61±1
					110.5	11.84	57±1
					111.0	11.84	59±1
					111.8	11.84	87±1
11A	80.4	23.05.1999	55°20.7'	18°01.8'	79	11.67	63±1
Vistula river							
Kiezmark	0	10.10.1999	54°15.47'	18°56.5'	0	0.53	0.8 ± 0.1

waters proceed slowly and they still show a several times higher levels of the radionuclide, relative to the period before the Chernobyl accident (cf. Tables 1–4 and 7) which took place 15 years ago, in spite of the fact that total exchange of the Baltic Sea waters occurs during 30 years.

The contribution of suspended forms of caesium-137 in the Baltic Sea waters is low, not exceeding 2 per cent. On the other hand, in the fluvial run-off its contribution is relatively high, attaining 55 per cent (Table 6). There is also a massive impact of the suspended form of ¹³⁷Cs on the transport of the radionuclide in both the Japanese rivers (from 10 to 35 per cent) [3] and in the estuarine waters of the Weser river (Germany) [8].

Concentrations of caesium-137 in the fluvial suspended matter are distinctly lower than those in marine suspensions (Table 6) owing to the differences in the physicochemical and biological composition of the suspensions and in physicochemical differences between the fluvial and sea waters which affect the sorption of caesium-137 on the particles.

Also the enrichment factors (EF) of caesium-137 in the fluvial suspension/fluvial water system differ markedly from those of the marine suspension/Baltic Sea water system. They are much higher for the fluvial system (suspension/water amounting to 123×10^3 , whereas with the marine system (suspension/water) they attain a value of merely 4×10^3 (Table 6).

It has been found that the Baltic Sea waters overlying the sea bed (0.2 to 0.3 m above the bed) contain more caesium-137 than those in the layer extending from the surface down to 1–2 meters above the sea bed, attaining 87 Bq m⁻³ (Tables 3 and 4). When taking the samples, the oxic/anoxic status of the sediment was not measured, but it is well known that the Gdańsk Deep (Stations 8 and 10) have the status of anoxic sediment [13] and precautions were taken to minimize the loss of sample integrity.

Sampling site	Year	Volume of water	r SPM	SPM ¹³⁷ Cs			Table 5. Activity concentrations	
	of sampling	(dm ³)	(g)	(Bq m ⁻³ $\pm 1\sigma$)	$(Bq kg^{-1} \pm 1\sigma d.w.)$	$(mg dm^{-3})$	_ particulate matter (SPM).	
Vistula river								
Mikoszewo	1996	34.9						
Kiezmark	1996	pooled	2.3408	0.7 ± 0.1	10 ± 1	67.1		
Świbno	1996	sample						
Vistula river								
Kiezmark	1999	40.5	1.1406	1.0 ± 0.1	36±1	28.2		
Vistula river÷Vist	ula river mou	th						
H4-H6	1998	86.0	0.2597	0.5 ± 0.1	161 ± 4	3.0		
111 110	1770	pooled sample	012037	0.0 = 0.1	10121	010		
Świna river								
Świnoujście	1997	120.5	2.6683	0.7 ± 0.1	30 ± 1	22.1		
Pomeranian Bay	1007	26.2						
ZP61	1997	26.2	0.1480	1.3 ± 0.1	211±5	5.6		
WZ	1997	pooled sample						
Southern Baltic Se	ea							
8	1998							
9	1998	66.3						
Sopot	1996	pooled	0.7419	1.7 ± 0.1	151±1	11.2		
Krynica Morska	1996	sample						
Karwia	1996							
Southern Baltic Se	ea							
10	1999	40.5	0 774	0.4 + 0.1	222 + 9	1.0		
		pooled sample	0.774	0.4 ± 0.1	222±8	1.9		

Sampling site	Year	Dissolved form	¹³⁷ Cs	in suspend	led form	*EF	Table 6. Enrichment factor (EF), between sedimenting
	of sampling	(Bq m ⁻³)	(Bq m ⁻³)	(%)	(Bq kg ⁻¹ d.w.)	-	material and water, and percent- age of suspended forms of cae-
Vistula river							sium-137 (southern Baltic Sea,
Mikoszewo	1996						vistula river, Swina river).
Kiezmark	1996	1.6	0.7	30	10	6000	
Świbno	1996						
Vistula river							
Kiezmark	1999	0.8	1	55	36	45000	
Vistula river+Vist	ula river mouth	I					
H4-H6	1998	1.3	0.5	27	161	123×10^{3}	
Świna river							
Świnoujście	1997	4.5	0.7	13	30	7000	
Pomeranian Bay							
ZP61	1997						
WZ	1997	82	1.3	1.6	211	3000	
Southern Baltic S	ea						
8	1998						
9	1998						
Sopot	1996	67	1.7	2	151	2000	*EF (enrichment factor) = con -
Krynica Morska	1996						centration of the nuclide in sus-
Karwia	1996						pended matter (mBq kg ⁻¹ drv
							matter) divided by concentra-
Southern Baltic Se	ea						tion of the nuclide in the water
10	1999	61	0.4	0.6	222	4000	body (mBq dm^{-3}).

Losses of radiocaesium could have taken place from the pore water to fresh iron oxide coating formed from the oxidation of Fe(II). An iron oxide film formed on the walls of some containers during storage, was removed, digested in nitric acid and counted. It was found that the iron oxide films (n=3) contained less than 60 mBq of ¹³⁷Cs, negligible compared to about 45 Bq in the bulk sediment. Furthermore, the pore waters were filtered prior to the preconcentration thereby removing most of the remnant particulate material. Thus, while losses of dissolved ¹³⁷Cs in pore waters cannot be entirely excluded, the values reported here represent lower limits [6]. Moreover, there is evidence in the literature that iron and manganese oxides are poor adsorbents of caesium-137 [6]. This phenomenon can be explained in terms of desorption processes of caesium-137 concentrated in bottom deposits rather than in terms of waters penetrating from the North Sea, which during recent

Table 7. Mean activity concentrations of caesium-137 and caesium-134 in the southern Baltic water during 1984–1998 (mBq dm⁻³) [4^{*}, 12].

	Year	¹³⁷ Cs	¹³⁴ Cs	
Before the Chernobyl	1984	13.3*	ND	_
accident	1985	12.6	ND	
After the accident	1986	86	45	
	1987	61	24	
	1988	92	19	
	1989	100	16	
	1990	96	15	
	1991	101	10	
	1992	96	6	
	1993	93	4	
	1994	87	<2	
	1995	79	<2	
	1996	95	<2	
	1997	78	<2	
	1998	67	<2	

years has been less polluted with caesium-137 than the Baltic Sea waters (Table 8).

Recognition of the nature of desorption processes of caesium-137 proceeding in the Baltic Sea needs more complex studies and merits attention as the final link of migration of caesium-137 in the Baltic Sea ecosystem are bottom deposits.

Conclusions

- In the fluvial transport of caesium-137, the suspended form predominates constituting up to 55 per cent of the transported radionuclide;
- in the Baltic Sea waters, the contribution of the suspended form of caesium-137 is considerably lower than that in the fluvial water and does not exceed 2 per cent;
- concentrations of caesium-137 in the fluvial suspended matter are distinctly lower than those in marine suspensions;
- enrichment factors of caesium-137 in the fluvial suspension/fluvial water system are higher than for the marine suspension/Baltic Sea water system;
- caesium-137 activity gradient has developed at the sea water/bottom interface at Gdańsk Deep as a result of backward diffusion from soft sediments;

Table 8. Surface caesium-137 activity concentration (on 01-01-1990) invarious ocean areas [9].

FAO region	Typical value ¹³⁷ Cs (Bq m ⁻³)
Baltic Sea	125
Black Sea	52
Irish Sea	55
Adriatic Sea	5.4
North Sea	12
Barents Sea	10

- concentrations of the dissolved form of caesium-137 in the Baltic Sea waters are still elevated relative to those recorded before the Chernobyl accident and actually place the Baltic Sea among the most polluted water areas in the World Ocean.

References

- Bowen VT (1970) Analyses of sea water for strontium and for strontium-90. In: Reference method for marine radioactivity studies. IAEA-TECDOC-118. IAEA, Vienna, pp 93–127
- Evans DW, Alberts JJ, Clark III RA (1983) Reversible ionexchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim Cosmochim Acta 47:1041–1049
- Hirose K, Aoyama M, Sugimura Y (1990) Plutonium and cesium isotopes in river waters in Japan. J Radioanal Nucl Chem 141;1:191–202
- Knapińska-Skiba D (1989) Distribution and migration of natural caesium, caesium-137 and rubidium in Baltic Sea environment. PhD Thesis. Institute of Oceanology PAS, Sopot (in Polish)
- Knapińska-Skiba D, Bojanowski R (1992) Release of radiocaesium from the southern Baltic sediments. In: Proc 18th Conference of the Baltic Oceanographers. St. Petersburg 1:241–250
- Knapińska-Skiba D, Bojanowski R, Radecki Z, Millward GE (2001) Activity concentrations and fluxes of radiocaesium in the Southern Baltic Sea. Estuar Coast Shelf Sci 53:779–786

- 7. Radioactivity in food and the environment, 1999 (2000) Food Standards RIFE-5. MAFF, London, UK
- Rieger EM, Claus B, Peters E, Schirmer M, Schmitz-Feuerhake I (1993) Cesium isotope-activity in the Weser ecosystem three years after the disaster at Chernobyl. Neth J Aquat Ecol 27;2/4:197–203
- Sources of radioactivity in the marine environment and their relative contributions to overall dose assessment from marine radioactivity (MARDOS) (1995) Final report of a co-ordinated research programme. IAEA-TECDOC-838. IAEA, Vienna
- Tomczak J (1990) Radionuclides ¹³⁷Cs and ⁹⁰Sr. In: Environmental conditions in the Polish zone of the southern Baltic during 1989. Institute of Meteorology and Water Management, Gdynia, pp 235–251 (in Polish)
- Tomczak J (1996) Long-lived radionuclides ¹³⁷Cs and ⁹⁰Sr. In: Environmental conditions in the Polish zone of the southern Baltic during 1995. Institute of Meteorology and Water Management, Gdynia, pp 146–155 (in Polish)
- Tomczak J (1999) Artificial radionuclides. In: Environmental conditions in the Polish zone of the southern Baltic Sea during 1998. Institute of Meteorology and Water Management, Gdynia, pp 170–176 (in Polish)
- Trzosińska A (1999) Oxygen and hydrogen sulfide. In: Environmental conditions in the Polish zone of the southern Baltic Sea during 1998. Institute of Meteorology and Water Management, Gdynia, pp 92–112 (in Polish)