Mössbauer study of the Heusler-type
Fe$_2$MAl compounds for M = V, Cr, Fe, Co, Ni

Eustachy S. Popiel,
Wiesława Zarek,
Marek Tuszyński

Institute of Physics,
University of Silesia,
4 Uniwersytecka Str., 40-007 Katowice, Poland,
Tel.: +48 32/ 359 13 51, Fax: +48 32/ 258 84 31,
e-mail: tuszynsk@us.edu.pl

Received: 28 June 2004, Accepted: 16 August 2004

Abstract The crystal structure and magnetic properties of Fe$_2$MAl compounds for M = V, Cr, Fe, Co and Ni were investigated by X-ray, magnetostatic and Mössbauer effect methods. It was found that the investigated compounds possess not perfectly ordered fcc structure of the L2$_1$-type. With increasing number of 3d electrons of M component the transition from the paramagnetic to ferromagnetic behaviour follows. Mössbauer spectra were analysed by a hyperfine field distribution method. They are characteristic of the ferromagnetic phase for M = Fe, Co and Ni and indicated the early observed preference of these atoms for the Fe sites.

Key words Heusler alloys • Mössbauer spectroscopy • site preference • magnetostatic measurements

Introduction

Heusler-type alloys are cubic ternary compounds with the formula X$_2$YZ, where X and Y are two different transition metals and Z is one sp element.

They can crystallize in ordered fcc cubic structure of the L2$_1$-type. Three elements X, Y, Z occupy crystallographically non-equivalent positions [12]. Figure 1 shows the unit cell of such structure.

These alloys have been widely investigated because they exhibit very interesting magnetic and electric properties [1, 2, 7–11, 13, 16, 17]. Iron based transition metal alloys show a great sensitivity to effect of local environment [1, 6, 7, 11, 14, 15]. The tendency for partial disordering of the crystal structure is often observed [7, 8, 11, 14, 15].

In this work we present results of X-ray (XRD), magnetostatic and Mössbauer investigations of the Heusler-type compounds Fe$_2$MAl with M = V, Cr, Fe, Co and Ni.

Experimental

Polycrystalline Fe$_2$MAl compounds with M = V, Cr, Fe, Co and Ni were obtained by the Czochralski method from a levitated melt using high purity starting materials. After melting, the ingots were powdered to a particle size less than 30 µm and vacuum annealed to obtain the L2$_1$-type structure. Annealing procedure was similar to that presented in Ref. [2]. XRD measurements of all samples was performed at room temperature using a Siemens D5000 X-ray diffractometer and Cu K$_{α}$ radiation.

The magnetic measurements of the investigated samples were performed at a temperature up to 800 K in
the magnetic field up to 12 kOe (1.2 T) using the Faraday method. The Curie temperature (\(T_C\)) for the investigated compounds was determined from measurements of the magnetization against the temperature in magnetic fields up to 0.1 T and also from Arrott plots. The saturation magnetization at a given temperature was estimated by extrapolation of the magnetization vs. reciprocal magnetic field intensity \(H\) to \(H^{-1} = 0\).

The Mössbauer measurement were performed at room temperature using a constant acceleration spectrometer with a \(^{57}\)Co:Pd source. These Mössbauer spectra were calculated by means of a discrete analysis (a single line and a few Zeeman sextets) and a hyperfine magnetic field distribution using the Hesse-Rübartsch procedure [3].

Results and discussion

XRD measurements showed that all investigated compounds were single phase and exhibited the fcc structure of the \(\text{L}_2_1\)-type. Detailed analysis of intensity of the superstructure Bragg reflections showed partial atomic disorder of the crystal structure and a preference of the Co and Ni atoms to occupy the 8c sites. Results of crystallographic and magnetic investigations are presented in Table 1.

The temperature variations of magnetization for selected investigated compounds are presented in Fig. 2.

Magnetic studies showed that the Fe\(_2\)VAl compound above 4.2 K does not exhibit a magnetic transition. For the Fe\(_2\)CrAl compound, the magnetic transition extends over a wide temperature range. It was found that it disappears with increasing magnetic field intensity. The temperature variation of magnetization for the Fe\(_2\)FeAl compound is typical for ferromagnets. Figure 3 shows magnetic isotherms at room temperature for the investigated compounds.

The Fe\(_2\)CrAl compound achieves the magnetic saturation at much lower magnetic field than the remaining compounds. This allows to suppose that this compound possesses a negligible magnetic anisotropy. The compounds with \(M = \text{Fe}, \text{Co and Ni}\) saturated in magnetic fields higher than 5 kOe (0.5 T). A detailed analysis of the magnetic isotherms showed that the approach to magnetic saturation is mainly determined by magnetic inhomogeneities connected with the atomic disorder of the crystal structure [5].

Figure 4 shows the Mössbauer absorption spectra and hyperfine field distributions for the investigated compounds. The Fe\(_2\)VAl compound is a paramagnet at room temperature and its Mössbauer spectrum shows only a single broad absorption line. The Mössbauer spectrum of the Fe\(_2\)CrAl compound indicates the coexistence of paramagnetic and weak ordered ferromagnetic phases. Similar behaviour for that compound with the \(\text{B}_2\)-type structure was also observed [7]. The hyperfine field distribution of this compound is broad and it indicates a partial atomic disorder of the crystal structure. A wide temperature range of the magnetic transition, observed for the Fe\(_2\)CrAl compound, (Fig. 2) and reaching the magnetic saturation in a weak magnetic field (Fig. 3) allowed to suppose the presence of magnetic clusters of Fe atoms with large magnetic moments (\(10^4\) \(\mu_B\)). From this reason, the

Table 1. Lattice constant \(a\), magnetic moment \(\mu\) at 300 K and the Curie temperature \(T_C\) for the investigated compounds.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(a) [Å]</th>
<th>(\mu) [(\mu_B/\text{f.u.})]</th>
<th>(T_C) [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(_2)VAl</td>
<td>5.760 ± 0.005</td>
<td>Paramagnetic above 4.2 K</td>
<td></td>
</tr>
<tr>
<td>Fe(_2)CrAl</td>
<td>5.791 ± 0.005</td>
<td>1.67 ± 0.01</td>
<td>330 ± 5</td>
</tr>
<tr>
<td>Fe(_2)FeAl</td>
<td>5.791 ± 0.005</td>
<td>5.00 ± 0.01</td>
<td>755 ± 2</td>
</tr>
<tr>
<td>Fe(_2)CoAl</td>
<td>5.766 ± 0.005</td>
<td>4.91 ± 0.01</td>
<td>>800</td>
</tr>
<tr>
<td>Fe(_2)NiAl</td>
<td>5.741 ± 0.005</td>
<td>4.00 ± 0.01</td>
<td>>800</td>
</tr>
</tbody>
</table>

Fig. 1. The unit cell of the \(\text{L}_2_1\)-type structure [12].

Fig. 2. Magnetization of the Fe\(_2\)FeAl, Fe\(_2\)CrAl and Fe\(_2\)VAl (insert) compounds vs. temperature measured in \(H = 0.05\) T.

Fig. 3. Magnetic isotherms at room temperature for the investigated compounds.
Fig. 4. Mössbauer spectra and hyperfine field distributions for the Fe$_2$MAI with M = V, Cr, Fe, Co and Ni.
Mössbauer measurement with an external magnetic field $H = 3$ kOe perpendicular to gamma rays was done at room temperature. Figure 5 shows a comparison of the hyperfine field distributions in the presence and absence of the external magnetic field for the Fe$_2$CrAl compound. As can be seen from this picture, the external magnetic field practically does not change the hyperfine field distribution. It means that the magnetic properties of this compound are not connected with Fe magnetic clusters.

The ferromagnetic properties of the compounds Fe$_2$MAl with $M =$ Fe, Co and Ni suggested by magnetic measurements were confirmed by Mössbauer spectra (Fig. 4). Only for the Fe$_2$NiAl compound, a weak contribution of the paramagnetic phase – a single line – was observed. The hyperfine field distribution of the ferromagnetic compounds points to a partial atomic disorder of the crystal structure. In an ideal ordered L2$_1$-type structure, the Fe(I) atom at site 8c has 4 Al(4a) and 4 M(4b) atoms at sites 4b as near neighbours and it possesses a low magnetic moment. In this situation, only the Zeeman sextet with H_m about 220 kOe should be observed. The exchange of an Fe atom with Al or M atoms causes that the Fe(II) atom at site 4a (4b site) is surrounded by 7, 8 Fe(I) atoms and possesses a high magnetic field ($H_m = 315\text{--}330$ kOe).

In the Fe$_2$FeAl compound, the partial atomic disorder causes the hyperfine field distribution for Fe sites 4a and 8c (Fig. 4). As can be seen from Fig. 4 for the Fe$_2$NiAl and Fe$_2$CoAl compounds, the amount of Fe atoms at sites 8c decreases, and on the diagram of the hyperfine field distribution the contribution of a high H_m component increases. It means that Co and Ni atoms prefer the site 8c. Such tendency was early observed for ternary Fe$_{1-x}$M$_x$Y alloys with $Y =$ Al, Si and Ga, $M =$ transition metals [4, 6–8, 14, 15].

Investigations of Heusler-like Fe$_2$MAl compounds with L2$_1$-type structure performed in this work show partial atomic disordering of the crystal structure and confirmed early observed site preference of the M atoms. With increasing number of 3d electrons of M component the transition from the paramagnetic to ferromagnetic behaviour follows.

References
3. Fráczkowski J (1990) Mössbauer effect study of ordered and disordered Fe$_{1-x}$Al$_x$ (0 < x < 0.5) alloys. Hyperfine Interact 54:793–797