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Introduction 

Fundamental research of stochastic process in materi-
als under the influence of high heat plasma and hard 
radiation pulses is important for a number of fields of 
technology – nuclear fission and fusion, air-space tech-
nology, accelerator engineering, etc. In the framework 
of denoted topics, the elaboration of a phenomenologi-
cal model of interaction between dense plasma beams 
and construction materials is of special interest [12, 23]. 
Investigation of stochastic processes in the nonlinear 
systems, in particular diffusion, non-equilibrium phase 
transitions, noise-induced patterns formation, etc. is 
closely concerned with this problem [2, 3, 5, 7]. 

In recent years, an increasing interest has been 
shown in noise-induced non-equilibrium phenomena 
in spatially extended systems [10], of which stochastic 
resonance [9], noise-induced phase transitions [10], 
stochastic transport in ratchets [24], noise-induced 
spatial patterns, and travelling structures [10] are a few 
examples. Active analytical and numerical investigations 
of various models in this field have been stimulated by 
their possible applications in population biology [27], 
molecular biology, chemical physics, nanotechnology, 
and for separation techniques of nanoobjects [13, 24]. 
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Over the last years various noise processes with arbitrary 
correlation time have been in use in a wide variety of 
problems in physical, chemical and biological sciences. 
Among other forms, dichotomous noise [11] is a typical 
theoretician’s paradigm for environmental fluctuations 
in this context. Environmental fluctuations modelled 
as dichotomous noise are also the topic of the present 
paper. 

We consider non-equilibrium transitions in 
N-species stochastic Lotka-Volterra systems of interact-
ing populations, i.e. in systems, which are described by 
non-negative integers counting the members of differ-
ent species acting within the problem scope. Molecules, 
atoms, photons, particles of plasma, predators and 
preys, infected individuals, etc., all can be regarded as 
populations under a diversity of situations [10, 11]. The 
different nature of the systems will become apparent 
by the characteristic interactions of each particular 
problem under consideration. The model presented 
in this paper can be rather considered as a toy-model 
for the elaboration of the above-mentioned phenom-
enological model of interaction between plasma beams 
and construction materials. However, we prefer here 
the biological interpretation of the model, because our 
results are immediately applicable in the ecosystem 
context. 

The purpose of the present paper is twofold: first, 
to provide a compact review of a series of our recently 
published papers [14, 17–21, 25], in which the coloured-
noise-induced transitions in nonlinear structures were 
considered. And second, to discuss – on the basis of 
the proposed model-system – some novel phenomena 
in stochastic systems where the role of the noise cor-
relation time as a control parameter is crucial. We are 
reporting here the following results for the stochastic 
predator-prey models with the Beddington functional 
response: (i) we establish coloured-noise-induced 
transitions from a globally stable equilibrium to the 
stable limit cycle (with some oscillations of population 
abundances), as well as in the opposite direction; (ii) 
the transition is found to be re-entrant, i.e. if the noise 
amplitude is greater than a certain threshold value, 
then the limit cycle appears above a critical value of the 
noise correlation time, but disappears again through 
re-entrant transition to the equilibrium state at a higher 
value of the noise correlation time; (iii) for certain pa-
rameters of the Beddington functional response there 
appear two re-entrant transitions (between oscillatory 
regimes and equilibrium states) vs. noise correlation 
time. It seems that the behaviour mentioned last is 
a new noise-induced phenomenon for stochastic prey-
predator systems. 

In particular, we show that the proposed simple toy-
model exhibits a variety of unexpected non-equilibrium 
cooperation effects, including noise-induced single 
and doubly unidirectional abrupt transitions, as well as 
noise-induced Hopf bifurcations. 

A model with dichotomous noise 

The present model is based on a generalization of 
the Lotka-Volterra model to the case of one predator 
population and N prey populations:

(1)  

where Xi(t) (i = 1,...,N) is the density of the i-th prey 
population at the time t, y(t) is the density of the preda-
tor population, and x−(t) = (1/N)⋅ΣiXi(t) is the average 
of the prey population densities. The non-negative 
constants β, d and α stand for the predator growth rate, 
the predator death rate, and the prey capturing rate, 
respectively. 

The function f(Xi) describes the development of the 
i-th species without any interaction with other species. 
A typical mechanism for the self-regulation within 
ecosystems includes, for example, territorial breeding 
requirements and the crowding effect caused by com-
petition for resources. This is taken into account by 
applying the generalized Verhulst model 

(2)  

where c > 0 and δ > 0 are constants, and Ki is the 
carrying capacity of the i-th species. It is remarkable 
that Gompertz self-regulation f

~
(X) is a special limit of 

generalized Verhulst self-regulation Eq. (2), namely 

(3)  

Without any loss of generality we may confine ourselves 
to time units with δ = 1 or (δ

~
 = 1). Random interaction 

with the environment is taken into account by introduc-
ing a coloured noise in fi(Xi). From now on we shall use 
fluctuations of the carrying capacity 

(4)  

where the factor [1 − εx−], ε ≥ 0, mimics a decrease of 
the carrying capacity caused by adaptive competition 
of populations for common resources, while coloured 
noise Zi(t) is assumed to be a dichotomous Markovian 
stochastic process [11]. A dichotomous process is a ran-
dom stationary Markovian process consisting of jumps 
between two values z = –1,1. The jumps follow in time 
according to a Poisson process, while the values occur 
with the stationary probability ½. The mean value of 
Zi(t) and the correlation function are 

(5)  

where δij is the Kronecker symbol and the switching rate 
ν is the reciprocal of the noise correlation time ν = 1/τc. 
Obviously, model (1) with Eqs. (2) and (4) is biologically 
meaningful only if a0 < 1. 

The function g(x,y) is given by 

(6)  
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where α ≥ 0, J ≥ 0, b ≥ 0, and e ≥ 0 are constants. The 
functional response g(x,y) is quite general: 
(i) if J = 0, then g(x,y) is the Beddington functional 

response [4], which describes the effect of predator 
interference on the trophic function. The param-
eters α, b and e stand for the prey capturing rate, 
predator interference intensity, and a saturation 
constant, respectively. 

(ii) Most popular functional responses, such as the 
Holling type II prey-dependent functional re-
sponse (J = 0, b = 0 in Eq. (6)) [6] and Michaelis-
Menten-Holling type ratio-dependent functional 
response (J = 0, e = 0 in Eq. (6)) [1], are particular 
cases of Eq. (6). 

(iii) In the case β = d = α = b = e = 0, y = 1, model (1) 
describes an N-species symbiotic ecosystem [8, 14, 
19, 25]; the coupling constant J > 0 characterizes 
the intensity of symbiotic interaction. 

To proceed with the analytical examination of model 
(1) we follow the mean field approximation scheme. We 
assume that N → ∞. This means that we are interested 
in the case of a very great number of populations (or 
subpopulations in a metapopulation). The mean field 
approximation can be attained by replacing the size 
average x− by the statistical average 〈X(t)〉 in Eqs. set 
(1). For the stationary state (or for the quasi-stationary 
state), we can solve the master equation corresponding 
to Eqs. (1), assuming that the predator growth rate is 
very small, β << 1, i.e., y varies very slowly. Since the 
dynamics of Xi is much faster than that of y, a quasi-
stationary probability distribution is formed before y 
is distinctly changed. In other words, the variable y in 
Eqs. set (1) is just a parameter for the dynamics of Xi. 
In this case, we can investigate the mean field dynamics 
of the Eqs. set (1) using the effective calculation scheme 
presented in [14, 19–21, 25]. 

In the mean field approximation, x− = 〈X(t)〉, each 
stochastic differential equation for Xi(t) in Eqs. (1) can 
be reduced to a stochastic differential equation of the 
form 

(7)
  
where 

The corresponding composite master equation is 

(8)
 

with Pn(x,t) denoting the probability density for the com-
bined process (x, an, t); n, m = 1,2; and a1 = –a2 = a. 

If the predator population density y is a very slow 
variable (or constant) and ρ > 0, then significant 
inequalities follow from Eq. (7) to characterize the 
quasi-stationary (or stationary) state of the system. For 
a stationary case, x1 = ρ1/c/[γ (1 – a)]1/c and x2 = ρ1/c/[γ 
(1 + a)]1/c are stable fixed points of the deterministic 
Eq. (7) with Z(t) = 1 and Z(t) = –1, respectively, and all 
trajectories X(t) satisfy the following inequalities: 

  
(9)

For a stationary state we can solve Eq. (8), taking as the 
boundary condition that there is no probability current 
at the boundary (9). With the help of the stationary 
probability distribution, one can easily calculate the 
moments of prey population densities 

  
(10)

where 2F1 is the hypergeometric function and k = 1,2,… 
Thus in the case of k = 1 Eq. (10) with the equation 

(11)  

determine, by small predator growth rates, the self-
consistency equations for the mean field of model (1). 

An alternative method to find the statistical average 
〈X(t)〉, appropriate to all values of the predator growth 
rate β, is presented in our work [17], but this method 
(also briefly described in section: “Noise-controlled 
Hopf bifurcation”) assumes that the noise variance is 
small. 

Noise-induced discontinuous transitions in systems 
with symbiotic interaction

The case of generalized Verhulst self-regulation 

The presence of coloured fluctuations of the carrying 
capacities of populations in N-species symbiotic systems 
with generalized Verhulst self-regulation (ε = β = d = α 
= b = e = 0, y = 1 in Eqs. set (1)) with an exponent c > 1, 
is analysed and discussed in [19]. We have found that: 
(i) coloured fluctuations of the environment can cause 

bistability and abrupt transitions of mean popula-
tion densities; 

(ii) the hysteresis for the mean field and related dis-
continuous transitions can be found as a function 
of noise parameters as well as of the coupling 
constant; 

(iii) for c > 1 abrupt changes of mean population densi-
ties appear only if the noise amplitude is greater 
than the threshold value a0c and the critical noise 
amplitude depends on the exponent c, only: a0c 
increases relatively rapidly if c increases; 

(iv) in the case of fixed values of c there is a lower limit 
for the coupling parameter J*(c) > 0, below which, 
J < J*(c) the system is monostable at all values of 
the noise parameters. 
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Figure 1 shows different solutions of the self-con-
sistency equation for the mean value of the population 
density 〈X〉 as a function of the coupling constant J and 
the noise correlation time τc at the noise amplitude 
a0 = 0.99. The solid and dashed lines are stable and 
unstable solutions of the self-consistency equation, 
respectively. The existence of alternative stable states 
(Fig. 1, the curve τc = 0.5) indicates that there is a coex-
istence region, J1 < J < J2, where two stable phases are 
possible. Notably, coexistence does not mean that the 
two phases are present simultaneously; however, either 
is possible depending on the initial distribution. If the 
value of the mean field 〈X〉 lies on the lower branch of 
the curve τc = 0.5 close to the point F, a slight growth 
of the coupling parameter J induces a catastrophic 
transition of the system to another stable state with 
the value of the mean field 〈X〉 corresponding to the 
point G. The opposite shift occurs when the coupling 
parameter decreases below the value J1. The situation 
described represents a typical case of first-order phase 
transitions. As the coupling-induced two-phase coexis-
tence region does not exist in the system without noise, 
it is a coloured-noise-induced effect. 

From Fig. 1, one can see that the coexistence region 
of the two phases exists only for moderate values of the 
correlation time τc. Hence, there is an upper limit τc

* for 
the correlation time τc, at greater values of which the 
system is monostable. In the case of fixed values of c 
the critical parameter τc

* increases monotonically from 
zero to infinity, if the noise amplitude a0 increases from 
a0c to one. Noise induced bistability, i.e. hysteresis, can 
also occur no matter which noise parameter, τc or a0, 
is chosen as the control parameter. For example, if the 
noise correlation time τc is considered as the control 
parameter, it can be found that a jump from a state with 
a bigger number of individuals to that with a lesser one 
occurs at smaller correlation times than the opposite 
jumps. Perhaps the most important new result, in an 
ecological context, is the existence of the critical noise 
amplitude a0c(c). We emphasize that for c > 1 abrupt 
changes of mean population densities appear only if 
the noise amplitude exceeds the threshold value a0c(c). 
Therefore, as the critical noise amplitude increases 
relatively rapidly if c increases, it seems reasonable to 

assume that in symbiotic ecosystems with generalized 
Verhulst self-regulation abrupt transitions appear with 
a greater probability if the exponent c is lower. 

The phenomenon of coloured-noise-induced abrupt 
transitions is robust enough to survive a modification of 
the noise as well as the self-regulation mechanism. Our 
calculations (see [14]) analogous to those given in [19] 
show that in the case of trichotomous noise most of the 
results of [19] are qualitatively valid. The trichotomous 
noise [15] consists of jumps between three values: z1 = a, 
z2 = 0, z3 = –a, while a > 0. The jumps follow, in time, 
the pattern of a Poisson process, the values occurring 
with the stationary probabilities ps(a) = ps(–a) = q and 
ps(0) = 1 – 2q, where 0 < q < ½. In a stationary state 
the trichotomous process Z(t) satisfies 〈Z(t)〉 = 0 and 
〈Z(t + τ)/Z(t)〉 = 2qa2⋅exp(−ντ), where the switching 
rate ν is the reciprocal of the noise correlation time 
τc = 1/ν, i.e., Z(t) is a symmetric zero-mean exponen-
tially correlated Markovian noise. It is remarkable that 
for a trichotomous noise Z, the kurtosis ϕ = (〈Z4〉/〈Z2〉2) 
− 3, contrary to the case of symmetric dichotomous 
noise (ϕ = –2), can be anything from –2 to ∞. Notably, 
variations of the kurtosis of trichotomous noise can also 
induce discontinuous transitions. 

The case of Gompertz self-regulation 

We have also modified the self-regulation mechanism. 
The influence of environmental fluctuations on an 
N-species symbiotic system with Gompertz self-regula-
tion (Eq. (3)) is discussed in [25]. Though the general 
picture of the coloured-noise-induced hysteresis is the 
same as that encountered in [19], some new phenomena 
appear. We have established two types of noise-induced 
discontinuous transitions – doubly unidirectional tran-
sitions (DUT) and single unidirectional transitions 
(SUT). Moreover, we have given the necessary and 
sufficient conditions for the appearance of such effects. 
SUT means that an increase in noise amplitude can 
cause a catastrophic fall in the size of populations, while 
by decreasing the noise amplitude no opposite transi-
tions can occur. To our knowledge, the appearance of 
a noise-induced SUT in models of ecosystems without 
extinction is a novel noise-induced effect. 

When investigating the dependence of 〈X〉 on the 
correlation time τc, five qualitatively different types of 
the graph 〈X〉 vs. the switching rate ν emerge (Fig. 2). 
These can be interpreted as different “phases” in the 
phase space (ε, J), where ε is an adaptation parameter 
(the phases (a)−(e) in Fig. 3): (a) the system is mono-
stable for all values of τc; (b) the phenomenon of DUT 
appears; (c) the system exhibits SUT from a lesser 
number of individuals to a bigger number; (d) the sys-
tem exhibits SUT from a bigger number of individuals 
to a lesser one; (e) in this case, the system is bistable 
for all values of τc, no transitions between stable states 
occur. Note that the coordinates of points B, C, and E in 
Fig. 3 depend on the noise amplitude a0. As a0 increases 
from zero to one, the points C and E move away from 
the origin O and this will increase the region of the 
phase space (ε, J), where discontinuous transitions 
are possible. Moreover, the point B moves from A to 
D, which causes an increase of the domain (d), where 

Fig. 1. The mean value of the population density 〈X〉 vs. the 
coupling strength J at different correlation times τc. System 
parameters: c = 2, a0 = 0.99, K = 1, y = 1 and ε = α = b = e = 
β = d = 0. In the case of τc = 0.5 the system shows hysteresis. 
Solid and dashed lines are stable and unstable solutions of the 
self-consistency equation, respectively. 
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a SUT from the state of a bigger number of individuals 
to a lesser one takes place. This novel feature of sym-
biotic ecosystems can provide a possible scenario for 
some catastrophic shifts of population sizes observed 
in nature [26]. 

The mean-field results considered correspond to an 
infinite number of globally coupled species. Bearing in 
mind the results of computer simulations (see [19]), one 
can assume that this scenario is not much different from 
more realistic systems, where the number of species is 
finite, at least in the case when the number of species 
is large enough. 

Noise-controlled Hopf bifurcation 

Recently, we have considered a broad class of (N + 
1)-species ratio-dependent predator-prey models. 
Those consist of one predator population and N prey 
populations with fluctuating carrying capacities [17]. 
A special case of this model corresponds to model (1) 
with ε = J = e = 0. Notably, in the framework of the 

mean field theory it is shown that the dynamical system 
for the mean prey abundance and predator abundance 
exhibits Hopf bifurcation with respect to the noise cor-
relation time. The corresponding transitions are found 
to be re-entrant, e.g., the periodic orbit appears above 
a critical value of the noise correlation time, but disap-
pears again at a higher value of the noise correlation 
time. Assuming that the noise variance is small, the 
nonmonotonous dependence of the critical capturing 
rate αcr(τc) on the noise correlation time is found (to 
the first order in the noise variance), and the conditions 
for the occurrence of noise-induced Hopf bifurcations 
are presented. 

The crucial step in the derivation on the mean-field 
self-consistency equations for model (1) by arbitrary 
values of the predator growth rate β is to find the for-
mal solution of the first equation in equations (1) with 
Eqs. (2), (6), and parameters ε = J = e = 0. Confining 
ourselves to the terms proportional to a0

2 (i.e., it is as-
sumed, that the noise amplitude is small, a0 << 1), we 
get, after averaging this formal solution over the real-
izations of the noise Z, the following self-consistency 
equations [17]: 

  

(12)

where x ≡ 〈X(t)〉, γ = K−c⋅{1 + a0
2(1 + c)⋅(c/2)}, and x. ≡ 

(dx/dt). The equations (12) become a four-dimensional 
dynamical system of x, x., x.. and y. A standard linear 
stability analysis performed at the equilibrium point 
yield the conditions for the occurrence of Hopf bifur-
cations [17]. 

The results of [17] demonstrate that the functional 
dependence of the critical capturing rate for Hopf bifur-
cations αcr on the noise correlation time τc exhibits a reso-
nance form as τc is varied. The typical forms of the graph 
of αcr(τc) are represented in Fig. 4. At the condition 

(13)  d < β < 1 + d 

one has to discern two cases. First, if (β – d)⋅(cβ + d) < 
2cβ⋅(1 + d – β), then the function αcr(τc) has a minimum 
αcr1 at a certain value τcm of the noise correlation time 
τc. At a long correlation time limit, τc → ∞, and also in 
the fast-noise limit, τc → 0, the critical capturing rate 
αcr saturates at the value 

(14)
 

which corresponds to the critical capturing rate in the 
absence of noise. Second, in the case of (β – d)⋅(cβ + 
d) > 2cβ (1 + d – β), there are always two extrema of 
αcr(τc). For decreasing values of τc, the critical captur-
ing rate starts from the value determined by Eq. (14), 
increasing to a local maximum αcr2, next it decreases, 

Fig. 2. Typical shapes of the function 〈X〉 vs. the noise switching 
rate ν = 1/τc for the different domains in (a), (b), (c), (d), and 
(e) in Fig. 3. The solid and dashed lines are stable and unstable 
solutions of the self-consistency equation, respectively. More 
details are in the text. 

Fig. 3. (ε, J) phase diagram for the dependence of the 
mean value of the population density 〈X〉 on τc in the case 
of Gompertz self-regulation (Eq. (3)). System parameters: 
a0 = 0.95, K = 1, y = 1, α = b = e = β = d = 0. Discontinuous 
transitions occur in the regions (a), (b) and (c). More details 
are in the text. 
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attaining a local minimum αcr3, and then αcr approaches 
αcr0 as τc → 0 (see Fig. 4(b)). 

Relying on Fig. 4, one can find the necessary and 
sufficient conditions for the emergence of a Hopf bi-
furcation (and re-entrant transition) due to the noise 
correlation time variations. For example, in the case of 
(β – d)⋅(cβ + d) > 2cβ⋅(1 + d – β), αcr1 < α < αcr0 the 
transitions are characterized by the following scenario. 
For large values of the correlation time, τc > τc1, where 
α < αcr(τc) the system is in a stable equilibrium state 
(〈X〉s,ys). At τc = τc1, i.e., α = αcr(τc1), the equilibrium 
point (〈X〉s, ys) becomes locally unstable and the system 
exhibits a Hopf bifurcation near (〈X〉s,ys). Inside the 
interval τc2 < τc < τc1 of the correlation time, there 
appears a limit cycle around (〈X〉s, ys), where both the 
predator-population and average prey-population den-
sities oscillate. At τc = τc2, where α = αcr(τc2), the limit 
cycle disappears and the system approaches a new stable 
equilibrium state, thus making a re-entrant transition. A 
further decrease of τc < τc2 causes just a monotonic de-
crease of the equilibrium state parameters 〈X〉s and ys. 

The result that the fluctuations of the carrying 
capacities of preys can induce Hopf bifurcation and 
re-entrant transitions is somewhat surprising, because 
in the corresponding deterministic models (noise 
absent), the critical prey capturing rate αcr as well as 
the asymptotic behaviour of the system solutions are 
independent of the carrying capacity K. 

Noise-induced relaxation oscillations 

Ratio-dependent predator-prey systems 

The work [17] is based on local stability analysis with 
the assumption that the noise dispersion (or amplitude) 

is very small. As a consequence, for the emergence of 
the phenomenon of noise-induced Hopf bifurcation 
the control parameter (prey capturing rate α) must 
be located very near the bifurcation point αcr of the 
corresponding deterministic model. Moreover, in the 
case considered in [17] the trivial equilibrium (〈X〉 = 0, 
y = 0) has its own basin of attraction, even if there exists 
a nontrivial stable or unstable (with a stable limit cycle) 
equilibrium. Hence, the appearance of noise-induced 
Hopf bifurcation is very sensitive to small variations 
of the system parameters and initial conditions, and so, 
the results of [17] are mainly of a theoretical interest, 
while applications in nature seem impossible. Thus, 
[17] leaves as unsettled the fundamental question in 
the ecological context, both from the theoretical and 
practical viewpoints, whether environmental coloured 
fluctuations with a finite amplitude can cause globally 
asymptotically stable limit cycles in ratio-dependent 
predator-prey systems (or in more general systems with 
the Beddington functional response). The question is 
addressed in the papers [20, 21] and the answer is af-
firmative, which is a crucial result, allowing in practice 
to link transitions between an oscillatory regime and an 
equilibrium state of population sizes observed in nature 
with changes of environmental fluctuations. 

The main contribution of the mentioned papers is 
as follows. In predator-prey systems (model (1) with 
ε = J = e = 0), in which the growth rate of the predator 
population is much smaller than the growth rates of 
the prey, β << 1, we establish coloured-noise-induced 
transitions from a globally stable equilibrium to the 
stable limit cycle (with some relaxation oscillations of 
the population abundances) as well as in the opposite 
direction. Furthermore, the transitions are found to be 
re-entrant, e.g., if the noise amplitude is greater than 
a threshold value then the limit cycle appears above a 
critical value of the noise correlation time, but disap-
pears again through re-entrant transition to the equilib-
rium state at a higher value of the correlation time. 

We would like to emphasize that the works [20, 21] 
are addressed to that region of the system parameters 
where the deterministic counterpart of the model is 
characterized by a nontrivial globally stable equilibrium, 
whereas our previous work [17] examined another 
parameters region, where Hopf bifurcations in the 
corresponding deterministic model are possible. Our 
results indicate that the effect of noise is not merely 
restricted to shifts of the critical capturing rate αcr for 
Hopf bifurcations as in the case described in [17], but it 
will change the whole nature of the dynamics. Notably, 
transitions from an equilibrium state to a limit cycle are 
possible only if the noise amplitude is greater than a 
certain critical value ac(α) the critical noise amplitude 
ac(α) decreases monotonically from one to zero if the 
capturing rate α increases up to the value b. 

The model with the Beddington functional response 

We will now consider, in brief, some aspects of the dy-
namics of a more general model with the Beddington 
functional response (model (1) with ε = J = 0). The 
detailed description of the analytic results, obtained by 
a dynamical mean-field approximation in combination 

Fig. 4. Dependence of the critical capturing rate αcr, Δαcr = 
αcr – αcr0, on the noise correlation time τc. System parameters: 
the noise variance a0

2 = 0.01, c = 1, b = 1, J = e = ε = 0; 
αcr0 is computed from Eq. (8). (a) The case of (β – d)⋅(cβ + d) 
< 2cβ (1 + d – β); d = 0.6 and β = 0.8. (b) The case of (β – d) 
.(cβ + d) > 2cβ⋅(1 + d – β); d = 0.09 and β = 0.9.
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with the assumption that β << 1 is given in [18]. Our 
major result is the establishing of the effect of multiple 
transitions (more than two) between relaxation oscilla-
tory regimes and equilibrium states, vs. noise correla-
tion time. Figure 5 shows a phase diagram in the τc − a0

2 
plane at α = 1.05b, K = 21.115e, β = 0.01, c = 1 and 
d = 0.005. The interesting peculiarity of the diagram 
is that there are two disconnected regions (the shaded 
areas in Fig. 5) where the limit cycle can appear. The 
lower domain (1) corresponds to purely noise-induced 
relaxation oscillations. In the larger shaded region (2) 
the oscillations are related to noise-influenced “deter-
ministic” limit cycles. Here we would like to note that 
the corresponding deterministic model (noise absent) 
with conditions α > b and K > eα/(α – b) can include 
a globally asymptotically stable limit cycle. 

It is noteworthy that there is a critical value of the 
noise amplitude a1 (in Fig. 5 a1

2 = 0.00545): 

(15)  

below which oscillations (but not relaxation oscillations) 
can appear at all values of the noise correlation time. 
When α0 > α1, the influence of the noise is thought to 
be a stabilizing factor, because an increase of the noise 
amplitude reduces rapidly the values of the correlation 
time τc where oscillations are possible. An important 
observation in domain (2) is that relaxation oscillations 
occur only in the relatively small wedge-shaped area 
(the upper border of this region is indicated with the 
dashed line in Fig. 5). In the case of other possible oscil-
lations in domain (2) the slow-fast (relaxation) approach 
considered is invalid at low values of prey densities Xi 

where the dynamics of Xi is slower than that of predator 
density y (see also Eqs. set (1)). Moreover, in the last 
case, under the condition β << 1 the cycle dynamics 
can come very close to the axes (〈X〉 = 0, y = 0), and 
extinction may occur in nature due to demographic or 
environmental stochasticity (even if we have a stable 
cycle mathematically). Generally, environmental fluc-
tuations prevent such oscillations (extinction), but the 

critical noise amplitude a1, above which prevention is 
considerable, increases relatively rapidly as the satura-
tion parameter e decreases (Eq. (15)). 

Conclusions 

We have presented some results for the mean-field dy-
namics of N-species stochastic Lotka-Volterra systems 
subjected to dichotomous noise. A major virtue of the 
proposed model is that interplay of coloured noise and 
interaction intensities of species can generate a rich 
variety of non-equilibrium cooperation effects, such as 
discontinuous non-equilibrium phase transitions and 
noise-induced stable limit cycles, even if the system 
is monostable in the absence of noise. Furthermore, 
our earlier results [12, 16, 22] about the dynamics of 
overdamped particles in a periodic, one-dimensional 
potential landscape subjected to a static tilting force and 
to both thermal noise and a non-equilibrium three-level 
coloured noise, show that mutual interplay of coloured 
and thermal noises in tilted ratchets with simple periodic 
potentials can induce unexpected anomalous transport 
phenomena. In particular, it is shown in [12, 16, 22] that 
such a model can exhibit hypersensitive transport, four 
current reversals, negative differential resistance, hy-
persensitive differential response, the phenomenon of 
disjunct “windows” for an external force, and absolute 
negative mobility. 

As the non-equilibrium phenomena considered 
in this paper and in [12, 16, 22] are robust enough to 
survive a modification of the coloured noise as well as 
the prey functional response (the potential landscape 
in the model of [12]), the results of the investigations 
of the basic models (model (1) and the model of Ref. 
[12]) can be applied for a variety of purposes. Possible 
applications range along from ecosystems [14, 17–21, 
25, 27] to intracellular protein transport in biology, or 
to methods of particle separation in nanotechnology 
[13, 24]. 

We believe that both the above described model and 
the model represented in [12] may also shed some light 
on the stochastic interaction processes of plasma with 
wall materials in plasma focus devices and will give some 
hints for the elaboration of realistic physical models for 
non-equilibrium transport and phase transitions by such 
interaction processes. The idea is that the particles of 
the surface, like predators, “consume” the hot plasma 
particles (“prey”) while gradually changing their own 
quality. This resembance should but be modelled by a 
certain correspondence of the stochastic parameters. 

Finally, we point out that although model (1) is not 
immediately applicable in the context of plasma focus 
devices, our exact analytical results can form a good 
starting point for the investigation of more realistic 
models. Probably, model (1) can be expanded, along 
the lines described in [2, 3, 5, 7], where the formation 
of noise-induced spatiotemporal structures in gas-
discharge systems is considered both experimentally 
and theoretically, into one that is suitable for studying 
pattern formation by plasma beam interactions with 
construction materials. In particular, the mathematical 
structure of the spatially discrete version of the model 
considered in [2, 3] is somewhat similar to the structure 

Fig. 5. (τc, a0
2) phase diagram for the existence of limit cycles. 

The parameter values J = ε = 0, α = 1.05b, K = 21.115e, 
β = 0.01, c = 1 and d = 0.005 are used. The shaded regions 
correspond to the two domains, (1) and (2), where oscillations 
are possible. The dashed line depicts the upper border below 
which the relaxation oscillations are possible. More details 
are in the text. 
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of Eqs. (1) with Eqs. (2) and (6) (the voltage drop and 
density of charge carriers in a discharge gap correspond 
to a prey and a predator, respectively). 
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