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Introduction 

Safety is one of the main concerns about the nuclear 
reactors design to be licensed. The reactor design 
should demonstrate that the technical objectives for the 
reactor safety are fulfilled. These technical objectives 
are to ensure the general prevention of accidents with 
high confidence margin; to ensure that, for all accidents 
taken into account in the design, even those of very low 
probability, the radiological consequences, if any, would 
be minor, and to ensure by prevention, protection, and 
mitigation measures that severe accidents with signifi-
cant radiological consequences are extremely unlikely. 
However, when attempting to optimize the design of 
engineered systems, the analyst is frequently faced with 
the demand of achieving several targets (e.g. low costs, 
high revenues, high reliability, low accident risks), some 
of which may very well be in conflict. At the same time, 
several requirements (e.g. maximum allowable weight, 
volume etc.) should also be satisfied [8, 11]. 

In this paper we present the genetic algorithms 
approach to multi-objective optimization and apply it 
within the reliability/availability analysis framework to 
choice the time intervals for the periodic testing of the 
components of the chimney water injection system of 
Egypt Second Research Reactor (ETRR-2). 

The power of genetic algorithms (GA’s) comes from 
the fact that the technique is robust and can deal suc-
cessfully with a wide range of difficult problems. GA’s 
are not guaranteed to find the global optimum solution 
to a problem, but they are generally good at finding 
“acceptably good” solutions to problems “acceptably 
quickly”. Where specialized techniques exist for solving 
particular problems, they are likely to outperform GA’s 
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in both speed and accuracy of the final result. Even 
where existing techniques work well, improvements 
have been made by hybridizing them with a GA. The 
basic mechanism of a GA is so robust that, within fairly 
wide margins, parameter settings are not critical. 

A problem with GA’s is that the genes from a few 
comparatively highly fit (but not optimal) individuals may 
rapidly come to dominate the population, causing it to 
converge on a local maximum. Once the population has 
converged, the ability of the GA to continue to search 
for better solutions is effectively eliminated: crossover of 
almost identical chromosomes produces little that is new. 
Only mutation remains to explore entirely new ground, 
and this simply performs a slow, random search. 

Chimney water injection safety system (CWIS) 

The Egypt Second Research Reactor, ETTR-2, is an 
open pool type research reactor. The reactor nominal 
power is 22 MW with a maximum thermal neutron flux of 
2.7 × 1014 n/cm–2 . 

s–1. Several experimental devices are 
installed at the reactor so that it can be used for radio-
isotope production, basic and applied research in science 
and engineering, material testing, neutron radiography, 
neutron activation analysis, and for training [11]. The 
reactor coolant and moderator is light water and the re-
flector is beryllium. The reactor uses U3O8-Al plate type 
fuel with Al cladding and 19.75% enrichment [9]. 

The CWIS is responsible for the injection of water 
to the reactor chimney in order to maintain the core 
covered with water in case of an eventual drop of the 
reactor pool water below the chimney upper edge. 
This system is triggered by a signal of low water level 
in the pool. The system has been designed to maintain 
the chimney filled with water during at least 24 h, thus 
compensating losses due to residual decay heat (after 
the reactor shutdown). The system consists of four 
identical non-redundant tanks (each holds 25% of the 
required water) and their discharge lines. The lines from 
the four tanks are combined into a common line that 
passes through an orifice plate. The flow finally passes 
through two redundant solenoid operated valves that 
are used to trigger the system [4]. 

The CWIS together with the inherent core heat 
transfer characteristics are capable of keeping all core 
temperatures within specified safety limits during all 
shutdown conditions, including situations created by 
a breach on the reactor cooling system boundary. 

The primary system, whose diagram is shown in 
Fig. 1, consists of a closed circuit through which the 
coolant is made to circulate driven by two centrifugal 
pumps (B), making it pass through the core in an up-
ward flow and then through heat exchangers (H) where 
heat generated in the core is eventually transferred to 
the secondary system [7, 9]. 

The system mean unavailability is estimated to be 
6.0 × 10–2. 

The genetic algorithm 

The genetic algorithm (GA) is a method for solving 
optimization problems that is based on natural selec-

tion, the process that drives biological evolution. GA 
repeatedly modifies a population of individual solutions. 
At each step, GA selects individuals at random from 
the current population to be parents and uses them 
produce the children for the next generation. Over suc-
cessive generations, the population “evolves” toward an 
optimal solution. GA uses three main types of rules at 
each step to create the next generation from the cur-
rent population: selection rules select the individuals, 
called parents, that contribute to the population at the 
next generation. Crossover rules combine two parents 
to form children for the next generation, mutation rules 
apply random changes to individual parents to form 
children computation, selects the next population by 
computations that involve random choices [14]. 

The simple genetic algorithm follows the structure 
depicted in Fig. 2. Each of these operations will be 
described in the following subsections [3]. 

Selection plays a central role in genetic algorithms 
determining how individuals compete for gene sur-
vival. Selection weeds out the bad solutions and keeps 
the good ones. This can be done by “fitness propor-

Fig. 1. Primary cooling system. 

Fig. 2. Simple genetic algorithm.
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tional selection” that assigns a selection probability 
in proportion to the fitness of the given individual. 
This, however, tends to be sub-optimal as the effective 
selection strength can be changed by adding an offset. 
More commonly used is “tournament selection”, where 
a number of randomly picked individuals are compared 
to each other. The goal of GA is essentially to find a set 
of parameters that maximize or minimize the output of 
a function or fitness. The individual with the best fit-
ness is then selected to be a part of the next generation. 
Selection in GA’s is usually done on the whole original 
population and usually repeated for all individuals in 
the population [1]. 

The simple genetic algorithm can be mathematically 
described as: 

For each chromosome  – Si, i = 1,2,… pop_size com-
pute the fitness value 

(1) eval(Si) = f(Si) 

Compute the total fitness of the population  –

(2) 

Compute the probability of a selection  – pi for each 
chromosome Si 

(3)  pi = eval(Si) / F 

Compute the cumulative probability of a selection  –
qi for each chromosome Si 

(4) 

Generate a random number  – r ∈ [0,1]. 
If  – r  q1 then select the first chromosome S1, oth-
erwise select the i-th chromosome Si, i = 1,2,…
pop_size such that qi–1  r  q1. 
Recombination of individuals is done to investigate 

the performance of new individuals that resemble the 
exiting ones. This is done on the genotype level of the 
individuals and leads to the construction of new inter-
mediate solutions. The notion of generations arises 
as parent individuals recombine their genes to create 
offspring. Recombination is often done by crossover 
[13]. In the crossover phase, all of the chromosomes 
(except for the elite chromosome) are paired up, and 
with a crossover probability, pc, they are crossed over. 
The crossover is accomplished by randomly choosing 
a site along the length of the chromosome, and exchang-
ing the genes of the two chromosomes for each gene 
past this crossover site [14]. The crossover operation 
proceeds in the following manner: 

For each chromosome  – Si in the population. 
Generate a random number  – r ∈ [0,1]. 
If  – r  pc then select the given chromosome for 
crossover. 
Compute select chromosomes randomly.  –
For each pair of coupled chromosomes, generate  –
a random integer number pos ∈ [1,…m–1], m is a 
number of bits in each chromosome, the number pos 
indicates the position of crossing point the following 
two chromosomes are crossed over as follows: 

(5) 

Are replaced by a pair of their offspring 

(6) 

Mutation. After the crossover, for each of the genes 
of the chromosomes (except for the elite chromosome), 
the gene will be mutated to any one of the codes with 
a mutation probability, pm. With the crossover and 
mutations completed, the chromosomes are once again 
evaluated for another round of selection and reproduc-
tion. Even if most of the search is being performed by 
recombination, mutation can be vital to provide the 
diversity which recombination needs. The mutation 
operation proceeds in the following manner: 

For each chromosome in the population apply: 
Generate a random number  – r ∈ [0,1]. 
If  – r  pm mute this bit by change its value from 0 to 
1 or vice versa. 

Genetic algorithm for a multi-objective optimization 
problem 

Multi-objective genetic algorithms usually try to find 
all the non-dominated solutions of an optimization 
problem with multiple-objectives. Let us consider the 
following multi-objective optimization problem with n 
objectives: 

(7)  Maximize   f1(x), f2(x),…fn(x) 

where x is a vector to be determined, and f1(x), f2(x),…, 
fn(x) are functions to be maximized. If a feasible solution 
is not dominated by any other feasible n objective solu-
tions of the multi-objective optimization problem, that 
solution is said to be a non-dominated solution. When 
the following inequalities hold between two solutions 
y, it x and is said that the solution x is dominated by the 
solution [3]:

(8) 

The aim of our multi-objective algorithms is not 
to determine a single final solution but to find all the 
non-dominated solutions of the multi-objective optimi-
zation problem in Eq. (3). Since it is difficult to choose 
a single solution for a multi-objective optimization 
problem without iterative interaction with the decision 
maker, one general approach is to show the set of non-
dominated solutions to the decision maker. Then, one of 
the non-dominated solutions can be chosen depending 
on the preference of the decision maker. Since Deb’s 
work [3], extensions of GA’s to multi-objective optimiza-
tion problems have been proposed in several manners. 
Fonseca and Fleming [5], have published an excellent 
survey on GA’s for multi-objective optimization. Almost 
all approaches which have already been proposed can be 
categorized into one of two classes: a “population-based 
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non Pareto approach” or a “Pareto-based approach” by 
their selection schemes [12]. 

In this Section we present the extension of the ge-
netic algorithm approach to multi-objective problems 
[1, 12]. In order to treat simultaneously several objective 
functions, it is necessary to substitute the single-fitness 
based procedure employed in the single objective 
GA for comparing two proposals of solution. The 
comparison of two chromosome coded solutions with 
respect to several objectives may be achieved through 
the introduction of the concepts of Pareto optimality 
and dominance which enable solutions to be compared 
and ranked without imposing any a priori measure as 
to the relative importance of individual objectives, 
neither in the form of subjective weights nor arbitrary 
constraints. 

During the optimization search, an archive of a 
given number of non-dominated solutions representing 
the dynamic Pareto optimality surface is recorded and 
updated. At the end of each generation, non-dominated 
solutions in the current population are compared with 
those already stored in the archive and the following 
archival rules are implemented [3]: 
1. If the new solution dominates over the existing 

members of the archive, they are removed and the 
new solution is added. 

2.  If the new solution is dominated by any member of 
the archive, it is not stored. 

3.  If the new solution neither dominates nor is domi-
nated by any member of the archive then: 

if the archive is not full, the new solution is  –
stored, 
if the archive is full, the new solution replaces  –
the most similar one in the archive. 

The setup of an archive of non-dominated solutions 
can also be exploited by introducing an elitist parents’ 
selection procedure which should, in principle, be more 
efficient. Every solution in the archive is chosen once 
as a parent in each generation. This should guarantee 
a better propagation of the genetic code of non-domi-
nated solutions, and thus a more efficient evolution of 
the population towards Pareto optimality. At the end 
of the search procedure, the result of the optimization 
is constituted by the archive itself which gives the Pareto 
optimality region [13]. 

The basic idea behind non-dominated sorting 
genetic algorithm (NSGA) is the ranking process ex-
ecuted before the selection operation, this approach is 
proposed by Srinivas and Deb [14]. This process identi-
fies non-dominated solutions in the population, at each 
generation, to form non-dominated fronts [8], based on 
the concept of non-dominance criterion. After this, the 
selection, crossover, and mutation usual operators are 
performed. In the ranking procedure, the non-dominat-
ed individuals in the current population are first identi-
fied. Then, these non-dominated individuals are shared 
by dividing the dummy fitness value of an individual by a 
quantity called niche count, which is proportional to the 
number of individuals around it. In order to maintain 
diversity in the population, a sharing method is then 
applied. Afterwards, the individuals of the first front 
are ignored temporarily and the rest of population is 
processed in the same way to identify individuals for the 
second non-dominated front [6]. A dummy fitness value 

that is kept smaller than the minimum shared dummy 
fitness of the previous front is assigned to all individuals 
belonging to the new front. This process repeated until 
the whole population is classified into non-dominated 
fronts. Since the non-dominated fronts are defined, the 
population is then reproduced according to the dummy 
fitness values [2]. The sharing procedure used in this 
method can be summarized as follows [14]: 

Given a set of nk solutions in the k-th non-dominated 
each having a dummy fitness value fk. The sharing 
procedure is preformed for each solution i = 1,2,…k 
as follows: 

Step 1 – . Compute the Euclidean distance measure 
with another solution j in the k non-dominated as: 

(9) 

where p is the number of variables in the problem is; xp
i, 

xp
u is the lower and upper bound of the variables xp. 

Step 2 – . The distance dij is computed with a pre-
specified parameter ∂share 

(10) 

The approximate value of ∂share is: 

(11) 

where q is the desired number of distinct Pareto optimal 
solution. 

Step 3 – . Increment j if j ≤ nk go to Step 1, if j  nk 
calculate nich count 

(12)  

Step 4 – . Shared the dummy fitness fk of the iih in the 
kih non-dominated as follows: 

(13) Shared fitness   

The main advantage is that it can deal with any num-
ber of objectives, the sharing procedure is preformed in 
the parameter value space with ensues a good distribu-
tion of the individuals. 

Optimization of the safety system 

Let us consider the chimney water injection system 
(CWIS) of the Egypt Second Research Reactor (ESRR-2) 
[9, 11]. Figure 3 shows the simplified scheme of a specific 
CWIS design [3]. The system consists of three pumps 
and seven valves. During normal reactor operation, 
one of the three charging pumps draws water from the 
volume control tank (VCT) in order to maintain the 
normal level of water in the primary reactor cooling 
system (RCS) and to provide a small high-pressure flow 
to the seals of the RCS pumps. Following a small loss 
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of coolant accident (LOCA), the CWIS is required to 
supply a high pressure flow to the RCS. Moreover, the 
CWIS can be used to remove heat from the reactor 
core if the steam generators were completely unavail-
able. Under normal conditions, the CWIS function is 
performed by injection through the valves V3 and V6 
but, for redundancy, crossover valves V4, V5, V7, V8 and 
V9 provide alternative flow paths if some failure were 
to occur in one of the nominal paths [12]. 

This stand-by safety system has to be inspected 
periodically to test its availability. The test interval (TI) 
specified by the technical specifications (TS) both for the 
pumps, and the valves is 30 days “720 h”. In this study 
the system components have been divided into three 
groups characterized by different test strategies. All 
the components belonging to the same group undergo 
testing with the same periodicity, Fig. 3. 

Assuming a mission time of one year, the range of 
variability of the three TI’s is [0, 8640] hours. Therefore, 
any solution to the optimization problem can be en-
coded using the following array of decision variables: 
x = {T1, T2, T3}. 

The goal of the work is to optimize the effectiveness 
of the TI’s of the HPIS with respect to three different 
criteria: i) mean availability, ii) cost, and iii) workers’ 
time of exposure to radiation. To compute the system 
unavailability we have developed the fault tree for 
the top event “no flow out of both injection paths A 
and B”. The Boolean reduction of the corresponding 
structure function has allowed us to determine the 
system minimal cut sets (MCS) and from these we can 
compute the mean system unavailability f1 as a function 
of the elementary unavailabilities of the components 
in the MCS. As for the mean unavailability f1 of a ge-
neric individual component i, several models have been 
proposed in the literature to account for the different 
contributions coming from failure on demand, human 
errors, maintenance etc. In this study the following 
model is assumed [11, 15]: 

(14) 

where: xi  is the probability of failure on demand; yi is the 
failure rate for the i-th component; τi is the test interval 
for the i-th component; ti is the mean downtime due 
to testing; di is the mean downtime due to corrective 
maintenance and γ0 is the probability of human error. 

Equation (14) is valid for x  0.1 and yτ  0.1 which 
are reasonable assumptions when considering safety 

systems. The relevant parameters’ values are taken 
from [11] and [7]. 

For the cost objective C, we assume that it is the sum 
of two major contributions: 
1. f2 = costs associated with surveillance and mainte-

nance. 
2.  Caccident = costs associated with consequences related 

to accidents possibly occurring at the plant. 
For a given mission time, TM, the surveillance and 

maintenance costs amount to: 

(15) 

As concerns the accident cost contribution, 
Caccident, this is intended to measure the costs associated to 
damages of accidents which are not mitigated due to the 
CWIS failing to intervene. To this aim we have referred 
to a small LOCA event tree found in the literature [7]. 
Actually, the CWIS plays an important role in many oth-
er accident sequences generating from other initiators 
such as intermediate LOCA, station blackout, turbine 
trip, etc. In our example, for simplicity we consider only 
the contribution due to small LOCA’s, recognizing that 
by so doing we significantly underestimate the accident 
cost contribution related to the CWIS. The character-
istics of the plant damage states (PDS), resulting from 
the various small LOCA accident sequences and the 
economic damages of the associated consequences, were 
also taken from [7]. The accident sequences considered 
for the quantification of the accident costs are those 
which involve the failure of the HPIS. 

These costs obviously depend on the initiating event 
frequency and on the unavailability values of the safety 
systems which ought to intervene along the various 
sequences: these values are taken from the literature 
[7, 10] for all systems except for the SDC and MSHR, 
and for the HPIS for which the unavailability is calcu-
lated as above explained and which depends on the test 
intervals of the components. Finally, for the accident 
costs associated to the relevant plant damage states we 
adopted the mean value of the uniform distributions 
given in Ref. [7]. 

During testing operations, the technicians may be 
subjected to radiation exposure. With reference to the 
SAR recommendation [7, 9], the dose received by work-
ers should be minimized. Assuming a constant exposure 
rate, the minimization of the dose is equivalent to that of 
the exposure time, so that the third objective function 
of our optimization problem can be assumed to be 

(16)  

with the same meaning of the symbols explained in the 
previous subsections. 

Equation (16) is similar to that of Eq. (15) for the 
surveillance and maintenance costs. 

The genetic parameters used are: 

(17)   Nger = 100, Npop = 100, Mutation Pr ob. = 0.05, 
         Mission time (TM) = 8760. 

Fig. 3. Simplified CWIS system.
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The result is shown in Fig. 4 which shows the best 
fitness function for all of them. After terminated opti-
mization a maximum number of generations exceeded 
the three functions together. We found that: 

the best function value for the first function found  –
was 1.1759, 
the best function value for the second function found  –
was 4.6378, 
the best function value for the third function found  –
was 49.826 
at the point value 0.07959, 0.08025, 0.98274, 0.04148, 

0.09098. 
It is clear that there exist a linear relationship 

between cost and exposure time. This is due to the 
fact that during failure of safety systems, frequencies 
and accidental costs are such that the contribution to 
cost due to accidents is negligible compared to that of 
surveillance and maintenance. So, we can see that, the 
test intervals in the genetic algorithm’s archive give an 
indication that the CWIS can made more available, 
on average, by increasing the frequency of the inspec-
tions but, as reasonable, this leads to large exposure 
times of inspectors and also renders the system more 
expensive. 

Conclusion 

Engineering design is clearly about making many 
decisions often under uncertainty and with multiple 
conflicting criteria. In this paper, the design problem 
is reformulated as a multi-objective optimization prob-
lem. The Egypt Second Research Reactor, ETRR-2, 
has been used as a case study. We present an approach 
to optimization the components of the CWIS of the 
22 MW open pool multipurpose reactor (MPR) at 

the Egyptian Atomic Energy Authority, using a non-
dominated sorting genetic algorithm. The proposed 
multi-objective genetic algorithm approach has been 
applied for determining the optimal test intervals of 
the components of a safety system in a nuclear reactor. 
The optimization performed with respect to availabil-
ity, economic and works’ safety objectives has shown 
the potentials of the approach and the benefits which 
can derive from a more informative multi-objective 
framework. 
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