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Introduction 

One of the important methods of investigating the 
electronic structure of solid states is a study of angular 
correlation of positron annihilation quanta. In the last 
years some relatively complicated Fermi surfaces have 
been studied experimentally and interpreted with so-
phisticated formalisms [9]. 

The experimental angular correlation curves, how-
ever, cannot give directly the information about the 
electronic structure, as it is disturbed by the positron 
itself. The several effects play a role, namely electron-
-positron (e-p) correlation, still unrecognized in an 
inhomogeneous electron medium, and the influence 
of electron-lattice and positron-lattice interaction on 
this correlation. These effects have been studied with 
advanced approaches, however, mainly separately and 
the results (most from the theory of the positron in 
an electron gas) have been used in different ways to 
calculate e-p momentum densities. Such calculations 
still suffer from many difficulties, e.g. the absolute 
values and shapes of ab initio e-p momentum densities 
are often different from the corresponding reconstruc-
tions from the experimental curves. A progress towards 
incorporating all the above-mentioned effects into one 
theory has been made by Sormann et al. [13, 15], who 
proposed in a series of papers the Bloch-modified lad-
der (BML) approach describing in terms of Green func-
tions the mutual scattering of electron and positron, as 
well as scattering of these particles on a crystal lattice. 
At present, this theory yields the best qualitative agree-
ment with the experiment as concerns the features of 
the shape of the e-p momentum density curve. 
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However, serious simplifications have been done for 
the e-p potential in the lattice of a crystal, and finally, 
results are not self-consistent and absolute values of the 
enhancement of the electron density at the positron do 
not fit the experimental data. Moreover, the necessity 
of taking into account many effects connected with 
a real structure of a material and, at the same time, 
many body electron-positron (e-p) interaction makes 
such calculations terribly tedious and requiring a lot of 
computational time [13]. Therefore, some simpler ap-
proaches are still being applied as concerns the method 
of calculating the momentum distribution of e-p pair. 
One of the most popular is the local density approxima-
tion (LDA) in which the electron and positron states 
are calculated separately and their densities are used 
for the computation of the local value of the enhance-
ment of electron densities due to e-p interaction. The 
unperturbed electron density is then multiplied by this 
enhancement. The formula itself for this enhancement 
is determined from many-body approaches for the 
positron in an electron gas [2, 4, 8]. 

One of the important points in the present knowl-
edge, concerning the e-p momentum density distribu-
tion, is the influence of the electron-electron correla-
tions on this distribution. In particular, since Carbotte’s 
and Kahana [6] paper, the question has appeared 
about the so-called many-body tail in this distribution, 
confirmed in Compton experiments for simple metals 
[10]. In turn, in recent papers [14, 17] devoted to the 
reconstruction of the Fermi surface due to angular cor-
relation of annihilation quanta the authors notice the 
importance of possible electron self-energy effects in 
the interpretation of the experimental data. 

The purpose of this paper is to determine the momen-
tum dependent enhancement factors (and the momentum 
distributions of the e-p pairs, which are the object of 
experimental studies) containing self-energy effects re-
sulting from electron-electron (e-e) interaction. Whereas 
self-energy effects have been taken into account in the 
summation in the formula for e-p momentum distribu-
tion [17], they have never been applied to scattering rules 
when calculating the enhancement factors. Moreover, 
we present a simple approximation for the LDA formula 
for the e-p momentum distribution R(p), that allows to 
take into account both the self-energy effects and the 
positron-lattice interaction within the enhancement fac-
tor. The results are presented in sections ‘Results’ and 
‘Conclusions’. 

Theory

The formula for the e-p momentum distribution R(p) 
which relates to the experiment of angular correlation 
of annihilation quanta is the following 

(1) 

where k denotes all occupied states and nk are the oc-
cupation numbers for the electrons. In the electron 
gas nk = Θ(kF – k). The functions ψk

ep(r–,r+) have to be 
orthogonal with respect to coordinates of both particles. 
For real metals, one often approximates the two-body 

wave function by a product of the Slater determinant of 
one-electron orbitals φk

i(r) the positron wave function 
φ+(r) and a factor γ which is, in general, a complicated 
functional of electron and positron wave function but 
approximately can be connected with the enhancement 
factor ε by the relation 

(2) γ2 = ε 

where ε describes how the probability density of unper-
turbed electronic states changes due to e-p interaction. 
Then R(p) reads 

(3) 

where j is the band index; nk,j values may differ from 
1 only due to lattice or temperature effects; rs is the 
electron density parameter (rs = (3/(4πne))1/3). 
In electron systems, however, there are self-energy 
effects that make the electron momentum distribution 
more complicated. Even for the interacting electron 
gas it exhibits non-rectangular character (Daniel-Vosko 
distribution) [7]. In our opinion the disagreement be-
tween R(p) (Fig. 4 in Ref. [9]) and the experiment may, 
at least in part, result from neglecting the self-energy 
effects in formulas in the approach of Sormann et al. 
[14]. These effects should be taken into account directly 
in the formula for the R(p) (see e.g. paper of Tang et 
al. [17] as well as in the two-body equation for the 
electron-positron wave function. The latter purpose can 
be done by the suitable change in the B-G equation for 
the electron-positron wave function χ(k,p). The χ(k,p) 
is the Fourier transform of the function χp(r–,r+) which 
relates to ψp

ep(r–,r+) in the following way (see e.g. [5]) 

(4) 

Our idea is to include the electron self-energy effects 
into the B-G equation by introducing appropriately the 
electron occupation numbers into the summation in 
this equation [5, 8]. 

(5) 

allowing electrons to be scattered with some probability 
to any states below and above the Fermi surface since 
there is a finite probability due to e-e interactions that 
these states are not occupied, and excluding the case 
when k = p. V(|q – p|) is the Fourier transform of 
the e-p potential and a(rs) is a function of the electron 
density resulting from the change of units in the equa-
tion to kF units [5]. 

Certainly, this ad hoc procedure introduces the 
self-energy effects in this meaning that if one replaced 
the free propagators Ge

0(k,ω) in the equation for the 
two-body e-p Green function [8] by the quasi-particle 
propagators Ge(k,ω) the “dressed” in self-energy dia-
grams propagators would be linked to the occupation 
numbers nk by the renormalization factors Zk and a cor-
rection f(k,ω) (see e.g. [11]). Since the exact evaluation 
of the suitable self-energy terms within the two-body 
equation seems only hardly tractable, we decided for 
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an approximation presented above: to apply directly 
some known formulas for the occupation numbers to 
the Goldstone equation for the e-p wave function, i.e. 
by changing appropriately the summation rules over 
the momenta of the scattered electron. Then, the cor-
responding formula for γ(p,rs) reads 

(6) 

and, with the use of Eq. (2), the momentum dependent 
enhancement factor can be calculated from Eq. (6). The 
annihilation rate λ can be determined from 

(7) 

For the electron gas the momentum distribution of 
e-p pairs is 

(8)     R(p) = np ε(p) 

and the formula (7) for the electron gas transforms into 

(9) 

The occupation numbers np can be calculated within 
the random phase approximation (RPA) according 
to the prescription in [6]: 

(10)   np = Θ(pF – p) + Pe(p) 

where 

(11) 

where u(q,ε) is the e-p interaction dynamic potential 
in the RPA approximation. In order to solve the two-
-dimensional integral Eq. (5) we can expand the follow-
ing function into Legendre polynomials 

(12)  

where ϑ is the angle between k and p. Then, we get the 
following set of equations for the gn(k,p). 

(13) 

where Pm,n< and Qm,n> are Legendre functions of the 
second kind and m, n > (m, n <) means that the greater 
(less) from both the numbers should be taken. The suit-
able linear combination of the gn(k,p) and Legendre poly-
nomials gives the requested function χ(k,p). If one takes 
into account that the positron in a real metal is scattered 

on a crystal lattice, there will be different contribution to 
the annihilation rate λ and R(p) from the several Fourier 
components of the positron wave function. The e-p cor-
relation function and the corresponding enhancement 
factor depend on the reciprocal lattice vectors as well. 
This effect can be estimated by considering the screening 
of the particle moving through the electron gas [16], i.e. 
γ(k,G,rs) will be obtained by a solution of Eq. (5) not only 
for positron momentum equal to 0 but also if the initial 
positron momentum is G. Then 

(14)

where bG are the coefficients of the Fourier expansion 
of the positron wave function φ+(r). This, in general, 
leads to a smaller total enhancement factor. 

Results 

Using the formulas (10) and (11) we calculated the oc-
cupation numbers np for rs = 2, 3, 4, 5, 6. Then, we solved 
the set of Eqs. (13) iteratively according to a scheme 
presented in [5]. The e-p potential was assumed at the 
moment in the RPA approximation, though we realize 
that it cannot be reasonable for rs > 4. Taking this poten-
tial in this preliminary calculation makes, however, an 
easy comparison to the earlier similar calculations based 
on the Bethe-Goldstone equation, possible. Certainly, 
the e-p potential have to be calculated self-consistently 
(see Ref. [12]). The new element in this procedure, 
making some difficulties in comparison to the scheme 
in Ref. [5], was to calculate the integrals at q = p. The 
discontinuities that appear at these points arise because 
of the energetic denominator in Eq. (5). This have been 
performed by the evaluation of the principal values of 
the integrals at these points. The enhancements (as 
defined by Eq. (2)), the momentum distributions and 
annihilation rates were calculated with the formulas (6), 
(8) and (9), respectively. The values of np determined 
above have been used. 

The example enhancement factor resulting from 
our calculations for rs = 2 is presented in Fig. 1a (full 
squares). It is shown together with the enhancement 
corresponding to the conventional calculations present-
ed in [5] that has been got for the same potential (RPA). 
The difference is that the new one contains self-energy 
effects of e-e correlations. It is slightly higher than the 
old one, especially at pF, however, for p > pF it is finite 
and, beside the maximum at p ≅ pF, slowly goes down 
to zero. The tail for p > pF corresponds to scattering 
of the electron from the states from above the Fermi 
surface to any states below and above the Fermi mo-
mentum. The characteristic feature of the momentum 
dependence of the enhancement calculated on the basis 
of Eq. (5) is that it exhibits a maximum just above the 
Fermi surface. This reflects a large susceptibility of the 
excited electrons to participate in screening of the posi-
tron. The number of such electrons is, however, small 
and finally the R(p) given by the formula (8) exhibits 
only relatively small tail (Fig. 1b). This tail can still be 

,( , ) 1 (1 ) ( , , )
ss r sr n rγ = + − χ∑ q

q
p q p

22 ep
0( ) ( , )R r c d n

Ω

λ = = π ψ∑ ∑∫ k k
p k

p r r r

2
0 ( )r c nλ = π ε∑ p

p
p

0 2

0

( ) ( , )( ( , ))
2 2

          ( , )

e e

e

d i dP i u G
V

G

ω ε
= ε ω

π π

⋅ − ω− ε

∑∫ ∫
q

p q p

p q

def
2 2 2( , ) ( , )( ( ) )

            = ( , ) (cos( ))l l
l

g p k
g k p P

= χ + − −

ϑ∑
k p k p k p

0

, ,
0

( , ) ( ) ( , )

2 ( )
            (1 ( )) ( , )

2 1             ( , )
2

n s n

s
n

m m n m n
m

g k p a r V k p

a r
dq n q qV q k

p

m q qg q p P Q
p p

∞

∞

< >
=

=

π
+ −

⎡ ⎤⎛ ⎞ ⎛ ⎞+
⋅ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑

2
0

2
( )

( )

        ( , , ( )) ( )i
s

r c
R

n b e r d− −

Ω

π
=

Ω

⋅ γ φ∑ ∑ ∫ p G r
k G k

k G

p

k G r r r



6 E. Boroński

reduced if taking into account Carbotte’s calculations 
[6] concerning the cancellation of the contributions 
from electron and positron self-energies for p > pF. The 
example of such a reduced tail for rs = 4 is presented in 
Fig. 2 by full squares and can be compared to the tail 
before this reduction (dotted line). 

The enhancement factors may also be defined as 
a following relation [1] (relative momentum enhance-
ment factors) 

(15)   ε(p) = R(p) / R(0) 

The corresponding figures are presented in Fig. 2 
for rs = 2, 3, 4. The annihilation rates for rs = 2, 3, 4, 5, 
6 are presented in Fig. 3. They are lower than the rates 
obtained when neglecting self-energy effects. For com-
parison, the rates of Arponen and Pajanne approach 
[2] and with the Boroński-Nieminen formula (BN) 
[4] (recent Monte Carlo calculations [3] give similar 
results) are shown. For rs > 4 our rates, however, start 
to diverge, due to the inconsistency caused by the too 
simplified e-p potential. 

Finally, we solved the Eq. (13) for rs = 2.66. This 
value of rs corresponds to the effective electron den-
sity in magnesium (for simplicity we assumed the fcc 

Fig. 1. a – The enhancement ε(p) for rs = 2 (dotted line with squares), the conventional (Kahana type) enhancement (solid line); 
b – the R(p) according to calculations in this work (dotted line with squares), the conventional R(p) for the electron gas (solid 
line). 

Fig. 2. Relative enhancement factors for rs = 2, 3, 4. rs = 2 
(solid line), rs = 3 (dashed line), rs = 4 (dotted line). The 
reduced tail for rs = 4 (full squares according to [6]) to be 
compared to dotted line. Upper-right corner: magnified part 
of the figure. 

Fig. 3. Annihilation rates vs. rs. The results of this work (full 
squares), Boroński and Nieminen [4] (solid line), Arponen 
and Pajanne [2] (dashed line). 
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structure). Our aim was to compare the momentum 
distribution based on the present calculations (Eqs. (13) 
and (14)) with that in Fig. 4 of the paper of Sormann 
et al. [14]. The results of calculations according to the 
formula (14) are presented in Fig. 4 and 5. In Fig. 4a the 
enhancement ε(p) for the lowest non-zero momentum 
component (G = 2.21) of the positron wave function is 
shown (full squares). This is slowly decreasing function 
for any electron momenta. The total enhancement func-
tion is adequately less than the enhancement calculated 
at the assumption that only zero momentum Fourier 
component is considered, i.e. if there is no scattering of 
the positron on a crystal lattice. This behaviour of the 
enhancement ε makes the corresponding curve of R(p) 
in Fig. 4b lower and increasing more slowly when ap-
proaching pF. In order to compare our results to those 
plotted in Fig. 4 of Sormann et al. [14], we have smeared 
out our final curve to follow the experimental resolution 
FWHM = 0.1. 

Conclusions 

Annihilation rates behave reasonably for rs ≤ 5. They 
are smaller than the corresponding rates calculated 
in [5] and the rates based on Boroński Monte Carlo 
calculation [3] (or Boroński-Nieminen formula [4]). 
However, we expect that as soon as the self-consistency 
is achieved, which is planned in the next project, they 
will get slightly higher and reasonable for all values 
of rs. Our enhancements for p < pF are slightly higher 

than those calculated without taking the self-energy 
effects into account. The values of these enhance-
ments extend, however, to the momenta greater than 
pF and slowly diminish. Consequently, the values of 
momentum distributions are smaller than the old ones, 
their increase with the momentum is weaker, and they 

Fig. 5. The results of this work for R(p) (solid line) for 
rs = 2.66 (self-energy effects and positron lattice interac-
tion are taken into account). The R(p) (dashed line) after 
smearing with FWHM = 0.1. The curves on this plot can be 
compared to the results of Sorman and Kontrym-Sznajd [9] 
(Fig. 4) for Mg.

Fig. 4. a – The enhancement ε(p) for rs = 2.66 for the lowest non-zero Fourier component of positron wave function (squares). 
It corresponds to G = 2.21 (monovalent fcc metal). The enhancement for the zero Fourier component (dashed line). The total 
enhancement (solid line); b – the total R(p) (solid line), without taking into account the positron lattice interaction (dashed 
line), without positron-lattice interaction and self-energy effects (dotted line). 
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exhibit some tails. The enhancement factors increase 
when approaching the Fermi momentum and this is the 
important argument for the validity of this approach. 
The next argument supporting this approach is the 
increase of these factors with rs, the feature contrasting 
with the result of Arponen and Pajanne. This was a weak 
point of their theory [1]. Of course, such a behaviour 
of our momentum distributions does not exclude that 
for some real metals with strongly localized electrons 
in atomic cores these distributions could be decreasing 
with increasing momentum. 

The e-p momentum distributions calculated for 
rs = 2.66 (Fig. 5) can be compared to the distributions 
(Ref. [9], Fig. 4) reconstructed on the basis of the ex-
perimental data. The agreement between the absolute 
values of the theoretical calculations and experimental 
data has improved noticeably, in particular, if positron 
scattering on the crystal lattice and the experimental 
resolution (σ = 0.1) were taken into account. This is a 
very important result of including some features of the 
crystal structure directly into the enhancement factor. 
One realizes that such calculations of self-energy effects 
even for the electron gas are only preliminary, since 
the RPA is only the first step to achieve the correct 
occupation numbers. For real metals, the prescription 
for such calculations with the use of spectral functions 
is given in, e.g. the paper of Tang et al. [17]. Moreover, 
Eq. (5) should be solved self-consistently with taking 
the xc potential into account [12]. Certainly, a lot of 
tests have to be done for real metals. Fortunately, the 
computations can be made literally in seconds since 
the numerical code is quite effective. 
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