Introduction

Zirconia (ZrO₂) ceramics has interesting mechanical and ionic properties which make it possible its use as structural and wear components, oxygen gas sensors. It is also used in solid oxide fuel cells due to its high oxygen ion conductivity. It is used as a grinding medium and engineering ceramics, due to its high hardness and high thermal shock resistivity. Therefore, the material properties, including optical properties, are of a high interest. For zirconia luminescent phosphors, a recent observation shows a huge sensitizing of lanthanides by Y₂O₃ co-doping [7, 8].

Usually, zirconia is stabilized by adding a few percent of Y₂O₃ which prevents the phase transformation of zirconia (occurring at about 1170°C) from a monoclinic to the tetragonal form (what is accompanied by a large volume shrinkage). Previous studies of zirconia, both with photoluminescence [7, 8, 15, 16, 20] and positron annihilation [4, 9, 10, 12, 17] techniques were performed mostly for fully stabilized ZrO₂:Y samples. The luminescence intensity of ZrO₂ nanocrystals depends on the temperature during heating and cooling in vacuum [14]. The luminescence of nanocrystalline ZrO₂ annealed in oxygen and nitrogen mixtures depends also on the oxygen partial pressure [6, 18]. The properly produced ZrO₂ luminescent powder is very promising as a material for oxygen detector [5, 6, 18, 19].
Our previous studies \cite{20} of tetragonal ZrO\textsubscript{2}:Y nanopowders under 266 nm laser excitation showed a broad photoluminescence band extending from 350 to 700 nm and centered at a 500 nm wavelength. A similar band, slightly narrowed and shifted to longer (550 nm) wavelength was observed in the same study for a tetragonal ZrO\textsubscript{2}:Y single crystal sample \cite{20}.

Positron annihilation spectroscopy (PAS) \cite{3, 11} is a powerful tool in analyzing defects in semiconductors, glasses, porous materials, etc. Apart from the recent work by Garay et al. \cite{9}, who used Doppler-broadening coincidence techniques, the majority of previous studies \cite{4, 10, 12, 17} yielded positron lifetimes in ZrO\textsubscript{2}:Y.

Experimental

Samples were prepared from zirconia nanopowders grown by a hydrothermal microwave-driven process. The precursor solution was zirconium (IV) oxide chloride octahydrate (ZrOCl \textsubscript{2} \times 8H\textsubscript{2}O) 99.5% purity (Riedel-de Haen) in distilled water, with pH of 10 adjusted by adding 1 M NaOH. The synthesis time was 30 min (20 min heating, 10 min cooling), at a 6 MPa pressure in a microwave ERTEC reactor (Wrocław) and at 280°C. The precipitates obtained were filtered, washed with distilled water, dried at 90°C for 24 h and ground. The powders obtained were subsequently annealed at 700°C and 800°C at a rate of 15°C/min and then held at the same temperature for 30 min. The reason for this latter treatment was to obtain a proper crystalline phase and the grain size. Details of microwave hydrothermal processing are described elsewhere \cite{5}. Pellets of 1 cm in diameter and 1 mm in thickness were formed under a 130 MPa pressure.

The temperature of 700°C was found to be optimal from the point of view of the grain size and the crystal structure which, after cooling, remains a mixture of tetragonal and monoclinic phases. The thermal treatment at 800°C was applied in order to get monoclinic ZrO\textsubscript{2} nanopowder. Physical properties of obtained nanostructured samples, exhibiting the grain size of 23 to 33 nm, and surface area of 36 to 12 m2/g after annealing at 700–800°C temperature, respectively, differ from those of bulk ZrO\textsubscript{2}.

The two series of samples (treated at 700°C and 800°C) were subsequently annealed for 20 min in an oxygen-nitrogen atmosphere (1 atm pressure) with different O\textsubscript{2} content (2.6%, 14.8%, 21%) or in vacuum (10-4 mbar) at 340°C.

Photoluminescence studies were performed at room temperature using a SM2203 spectrofluorimeter with two double built-in monochromators. The 150 W high-pressure Xe lamp was used as the excitation source, and a R-928 Hamamatsu photomultiplier for PL detection.

Present positron measurements were done by Doppler broadening PAS (DB-PAS) technique at the Trento laboratory \cite{2, 21}. The measurements were carried out with an electrostatic slow positron beam tunable in the 0.05–25 keV energy range which corresponds to a depth scale of 1 to about 1000 nm. The mean positron implantation depth \(z \) is related to the positron implantation energy \(E \) through the equation:

\[
Z = \frac{(40/\rho)E^{1.6}}{\rho}
\]

where \(Z \) is in nanometers; \(\rho \) – density is expressed in grams per cubic centimeter and energy \(E \) in keV, respectively \cite{1}. The ZrO\textsubscript{2} density of 5.6 g/cm3 was used for the calculation of the positron implantation depth; this actually can lead to an underestimation of the implantation depth as the real density of present nanostructured pellets is somewhat lower (within 5% \cite{5}). 511 keV gamma detection was performed by a high-purity Ge detector (resolution of 1.2 keV at 511 keV with a 6 μs shaping time). The spectra were characterized by the shape parameter \(S \), defined as the ratio of the counts in a central area \(|511-E| \leq 0.85 \) keV of the annihilation line and the total area \(|511-E| \leq 4.25 \) keV and the wing parameter \(W \) defined as the fraction of the counts in the wing region \(1.6 \leq |E| \leq 511 \) keV of the peak. The \(S \) parameter represents the fractions of positrons annihilating with low momentum electrons, while the \(W \) parameter represents the fractions of positrons annihilating with high momentum electrons (outermost core electrons); more than 2.5 \times 105 counts in each annihilation spectrum were recorded.

Three-gamma annihilation signal indicates the formation of positronium atom inside the material, or in other words, the presence of large open volumes (comparable with atomic radii). The 2–3γ ratio was calculated as the ratio between the valley area \((E, \text{between} 410–500 \text{keV}) \) and the 511 keV peak area \((|511-E| \leq 4.25 \text{keV}) \) \([R(E)\text{parameter}]\). The \(R(E) \) parameter was calibrated by measuring the Ps formation in a Ge crystal \((111) \) as a function of the temperature. The \(Rn (\%) \) calibrated parameter is defined as \((R - R0)/(R - R0) \). It is assumed \(Rn, (100\% \text{ positronium formation}) \), the \(R \) value being obtained by extrapolating to zero implantation energy \(R \) measured in Ge at 1000 K. At this temperature, all positrons at the surface form positronium. As \(R0 (0\% \text{ positronium formation}) \), the \(R \) value at the highest positron implantation energy was assumed. Positrons do not form Ps in the Ge bulk. In our measurements we obtain directly the percentage of the \(o-Ps \) fraction \(R(\%) \) in the total annihilation signal, by normalization of the three-gamma signal to that from germanium samples at 800°C \cite{13} where we assume \(R = 100\% \).

Results and discussion

Positron annihilation \(S \)-parameter dependences on the incident positron energy (i.e. on the implantation depth) are shown in Fig. 1 for samples sintered at 700°C and in Fig. 2 for samples sintered at 800°C. For all samples, the \(S \)-parameter varies little with the positron implantation energy, indicating that samples are rather homogeneous in depth. Some rise of the \(S \)-parameter on the surface is probably related to the formation of the positronium atom. The single series in Figs. 1 and 2 show, apparently, little difference but the general tendency is clear: the rise of the treating temperature and the oxygen content in the annealing phase reduces the \(S \)-parameter indicating less defects.

In all samples the three-gamma annihilation signal is high and rises towards the surface, for the 10 nm depth, see Figs. 3 and 4. This indicates the presence of relatively large free volumes (of the order of few atomic units, at least) in the near-to-surface layer. Note that
such a feature is particularly important in gas-sensor applications. The samples treated at 700°C (tetragonal and monoclinic phases), and in particular annealed with higher oxygen content show a relatively higher positronium fraction in the bulk. Note, however, that the o-Ps signal depends not only on the open volumes but also on the surface features (chemical terminations) of the nanograins. In fact, annealing of 700°C samples at low-oxygen contents (2.6%) even rises the o-Ps signal, see Fig. 3. Probably, terminating the surface with oxygen atoms facilitates o-Ps formation.

Presence of large open volumes was observed also in positron lifetime measurements of pressed (250 MPa) nanostructured pure zirconia pellets [17]. In those measurements apart from short lifetime components (189 ps and 373 ps) attributed in Ref. [17] to annihilation inside nanograins and on the grain boundaries, respectively, two long lifetime components (2 and 34 ns, with 1.5% and 7.4% intensities, respectively) were observed. In particular, this latter lifetime is to be related to large open volumes between grains. Also the shortest component can be attributed to free para-positronium (p-Ps) annihilation. Long-life components disappear after sintering at 1200°C [17]. Note, however, that for getting fully compact zirconia ceramics usually applied sintering temperature is 1100–1300°C [17].

Photoluminescence spectra are shown in Fig. 5 for samples treated at 700°C and in Fig. 6 for samples treated at 800°C. All spectra are broad, extending from about 350 to 700 nm wavelength (from about 1.8 to 3.5 eV emitted photon energy) and peak at about 3.0 eV photon energy (420 nm). The intensity of the PL for samples annealed in vacuum is lower by a factor of 2 for pellets formed at 800°C as compared to pellets formed at 700°C compare Figs. 5 and 6 (note different PL intensity scales).

Annealing in oxygen atmosphere reduces the PL signal in all samples. For samples treated at 700°C, the oxygen content must be higher (14.8%) in order to obtain the same quenching of the PL signal as that in samples treated at 800°C and annealed with lower oxygen content (2.6%).

Some shoulder is observed at about 600 nm on both figures for samples annealed in the vacuum; the inten-
sity of this shoulder does not change with the rise of the annealing temperature. Yellow-orange PL was observed in tetragonal and cubic polycrystalline ZrO$_2$:Y and attributed to some structure disorder [15]. In the previous studies [20] of single crystal ZrO$_2$:Y, a similar, side-band peak in the photoluminescence signal was observed.

Since the band gap of tetragonal ZrO$_2$ is above 5 eV the observed broad PL bands are tentatively attributed to some defects in the material. Quenching of the PL bands, particularly visible after treating at 800°C, for even small oxygen concentrations, indicate that these are zirconium-oxygen ZrO$_{2-x}$ non-stoichiometric complexes responsible for the PL signal. However, probably at least two different centers are involved in the photoluminescence. The main peak in PL is significantly reduced in samples treated at 800°C (and with no oxygen atmosphere annealing) as compared to 700°C what suggests the role of defects or low dimensional structures, like grain borders in PL. The latter observation is congruent with PAS studies. In fact, S-parameter values for the samples annealed at 700°C and subsequently in 14.8% oxygen atmosphere coincide within the experimental uncertainty with the values for the sample annealed at 800°C in vacuum.

![Graph](image1.png)

Fig. 5. Luminescence intensity for nanostructured ZrO$_2$, treated at 700°C and annealed at 340°C (20 min) in different oxygen content (0%, 2.55%, 14.8%) with nitrogen being the remaining atmosphere component. The insets document the PL intensity dependence on oxygen pressure. Excitation at 274 nm at room temperature (RT).

![Graph](image2.png)

Fig. 6. Luminescence intensity for nanostructured ZrO$_2$, treated at 800°C and annealed at 340°C (20 min) in different oxygen content (0%, 2.55%, 14.8%) with nitrogen being the remaining atmosphere component. The insets document the PL intensity dependence on oxygen pressure. Excitation at 274 nm at RT.
In the previous studies [20] for ZrO₂:Y a shift of the PL peak position with the excitation photon energy was noticed. That shift suggested that the zirconium-oxygen complexes are distorted with the distortion depending on the distance to the intrinsic defect (e.g. oxygen vacancy) [20]. The present measurements confirm this hypothesis.

Conclusions
Photoluminescence and positron annihilation studies were performed on pure zirconia nanostructured samples. Observed broad PL bands indicate Zr-O complexes related to some defects as the PL source. Positron studies indicate the presence of large free volumes, open towards the sample surface. Treating at 800°C, and annealing in the oxygen atmosphere reduces significantly the PL signal. A reduction of the defect contents is visible also in the oxygen atmosphere reduces significantly the PL signal. Treating at 800°C, and annealing in the oxygen atmosphere reduces significantly the PL signal. A reduction of the defect contents is visible also in the oxygen atmosphere. It seems reasonable to identify the nature of the PL (and defect) centers, the site-sensitive PAS measurements (Doppler-coincidence) are planned. Additionally, measurements on samples with higher sintering temperatures would be useful in order to identify the limit for the presence of large open volumes, as seen by PAS.

Results of these investigations may contribute to explaining how the excess from ZrO₂ stoichiometry influences the luminescence properties of this material. Understanding of this phenomenon is likely to be meaningful for studies of related processes occurring in other binary oxides such as ZnO and TiO₂ etc.

Acknowledgment. This work was partially supported by grant no. N N508 0851 33 of the Ministry of Science and Higher Education (Poland) donated for the years 2007–2009 and by UMK Rector, grant no. 524-F. One of the authors (JDF) thanks Sergey Yatsunenko for his assistance with the PL measurements. We thank the referee for noting the inconsistency in the lifetime interpretation in Ref. [17].

References