Differentiation between fossil and biofuels by liquid scintillation beta spectrometry – direct method

Ronald Edler, Lauri Kaihola

R. Edler
PerkinElmer LAS (Germany) GmbH, Ferdinand-Porsche-Ring 17, 63110 Rodgau, Germany, Tel.: +49 0 172 638 5909, Fax: +49 0 421 620 8425, E-mail: Ronald.Edler@perkinelmer.com

L. Kaihola
PerkinElmer Low Level Laboratory, Wallac Oy, P. O. Box 10, 20101 Turku, Finland

Received: 29 September 2009

Abstract. Liquid scintillation spectrometry of 14C in gasoline/ethanol and diesel oil was carried out using Quantulus® and straight mixtures of fuel and an organic scintillation cocktail. A linear correlation was found between the concentration of carbon that originates from the bioethanol (biocarbon) and the fuel mixture’s 14C activity in the range 0–100% (m/m) biocarbon content. Because of these good linear correlations, quantitative determination of a fuel’s biocarbon content can be made by 14C analysis. The direct method is also applicable to analysis of the bio-based materials dissolvable in solvents, which can be mixed with scintillation cocktails.

Key words: biocarbon • liquid scintillation • biofuel • 14C • Quantulus • PerkinElmer

Introduction

The world economy is strongly dependent on fossil fuels. Rising fuel prices and the Kyoto Protocol are driving a shift towards renewable energy sources to reduce CO$_2$ emissions. The United States has declared a preference for using bio-based materials in the U.S. Department of Agriculture program called the Federal Bio-based Products Preferred Procurement Program (FB4P) [16]. Biofuel production is increasing in the U.S. to expand renewable energy usage and the Federal Government is pushing strongly towards an economy less dependent on fossil fuels. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport, call for 5.75% biofuel proportion from the total sales in EU by 2010 (traffic fuels, gasoline and diesel) [5].

Tax incentives have been introduced in many countries to promote biofuels. There is a growing interest in a method to differentiate between biofuels and fossil fuels, and to determine the content of biological components in fuel. Since 14C has decayed in fossil fuels, but is present in biofuels, liquid scintillation beta counting is suitable for characterization of the biofuel component. Biogenic components have been successfully analyzed in the case of food ingredients, wine, liquors and of course in archeological samples [3, 8, 10, 11, 14]. The oil industry, however, has so far used 14C analysis mainly in process research. ASTM standard D6866-06 lists three radioanalytical methods for analysis of bio-based content of natural range materials, two of which make use of liquid scintillation spectrometry [1]. Direct
LSC counting of fuel/cocktail mixtures is missing in the ASTM standard, which is not fuel specific. In this application note we describe 14C radionuclide analysis with direct liquid scintillation counting [4, 7].

14C in nature

Cosmic radiation produces 14C (‘radiocarbon’) in the stratosphere by neutron bombardment of nitrogen

14N + 1n $\rightarrow ^{14}$C + 1p

The 14C production rate is 7.5 kg/y. The 14C concentration stays approximately constant due to rapid mixing of the atmosphere, although the cosmic intensity is higher at the poles due to the deflection of charged cosmic particles along the magnetic field lines of the earth (corresponding to neutron intensities in the ratio 5:1 at the poles and the equator, respectively). Consequently, 14C atoms combine to form ‘heavy’ 14CO₂ which, except in the radioactive decay (and isotopic fractionation effects), is indistinguishable from the ordinary carbon dioxide. The total amount of 14C on earth in equilibrium is 62 tons, which is 10⁻¹⁰ percent of all carbon in biosphere, atmosphere and oceans.

14C concentration will be homogeneous over the globe and because it is used by plants, it will be uniformly present in all biosphere but has decayed in fossil materials due to its short half-life of 5730 years. 14C decays by beta particle emission, where the simultaneously emitted anti-neutrino shares the decay energy and therefore the beta particle is not mono-energetic, but has a long tailed energy spectrum with maximum energy 156 keV.

14C $\rightarrow ^{14}$N + $^\beta$⁻ + $^\nu$⁻

Standard analysis methods for determining bio-based content of carbon in bio-based products

As mentioned previously, ASTM standard D6866-06 lists three radioanalytical methods for analysis of bio-based content, two of which make use of liquid scintillation spectrometry [1].

Method A

ASTM standard D6866-06 Ch 7.1 describes method A in detail, which is based on trapping of CO₂ from a combusted sample into Carbo-Sorb®/methanol mixture. Ultima™ Gold is mentioned in the method as the cocktail.

We recommend Carbo-Sorb E (6013721) that can accept up to 4.8 mmol CO₂ per mL and Permafluor® E+ (6013181) in ratios 1:1 or lower [15]. The carbon dioxide absorption method has also been used in radiocarbon dating [2, 13].

NOTE: burning of fuel cannot be done in an ordinary oxidizer due to risk of explosion (use Parr oxygen combustion apparatus instead or catalytic incineration).

Method B

Method B is based on accelerator mass spectrometry (AMS) and isotope ratio mass spectrometry (IRMS) with an approach similar to the one used in routine radiocarbon dating. CO₂ is converted to graphite and 14C atoms counted without waiting for the radioactive decay [4, 12].

Method C

Benzene synthesis is a routine sample preparation method in 14C dating by LSC of archaeological samples [8, 9, 12]. 15 mg butyl-PBD powder is added as the primary solvent per mL benzene for sample counting in LSC systems such as the Quantulus, PerkinElmer’s ultra low-level liquid scintillation spectrometer [4]. Glass or Teflon® vials are needed to minimize loss of benzene. As no cocktail in liquid form is needed, the vial will contain a maximum amount of carboneous sample.

Noakes et al. have reported measurements of bio-based products using these ASTM standard methods [12]. Although methods A and C are less sensitive than that of using AMS/IRMS, they have two distinct advantages: 1) lower costs per evaluation, and 2) much higher instrument availability worldwide. Sophisticated sample preparation methods are contained in methods B and C.

Direct 14C analysis in fuels by liquid scintillation beta spectrometry

Method D – mix fuel sample directly with cocktail

This method is not presented in the ASTM standard D6866-06.

Liquid scintillation counting allows direct detection of sample 14C signal in cases where the sample can be homogeneously mixed with a cocktail. This is possible with most liquid samples, and a wide variety of cocktails are available, which accept organic and aqueous samples [6]. Counting efficiencies may vary due to variable quench effects introduced by the sample. Either quench calibration curves need to be made prior to the measurement, or radioactive standard material needs to be dissolved in the sample to enable later efficiency evaluation. Organic cocktails accept a wide range of gasoline/ethanol mixtures and biodiesel.

Experimental

Liquid scintillation counting was performed at the PerkinElmer Low Level Laboratory in Turku, Finland, using a Quantulus ultra low-level liquid scintillation spectrometer [4]. The temperature of the instrument and the samples were 18°C. Vials were Teflon® coated polyethylene vials with aluminum coated gaskets in the caps to ensure minimal sample loss during counting.

The cocktail used in the work was OptiPhase HiSafe2 (1200-436). Betaplate Scint (1205-440) and
Differentiation between fossil and biofuels by liquid scintillation beta spectrometry

UltimaGold F (6013179) are equivalent cocktails and accept 5 to 15 mL fuel per 15 to 5 mL cocktail. The best figures of merit (EV)²/B for pure gasoline are achieved at 14 mL fuel to 6 mL cocktail in a spectrum window extending to the spectrum endpoint. The background reduces at the high mixing ratios, compensating for the lower counting efficiency (Fig. 1). In ethanol, the point is at 12.5 mL. The inverse square root of the figure of merit is proportional to the minimum detectable concentration of activity in the sample. The figure of merit should be tested in each experimental setup, as the background level depends on the local environmental conditions and on the type of liquid scintillation counter. Also, the color of the fuel will have an effect on the figure of merit.

In this work, 10 mL fuel was mixed with 10 mL of sample due to the limited sample volume for the experiments.

Fuel samples were blended oxygenate-free unleaded gasoline (ULG95), bioethanol and fossil ethanol in the mass ratios as specified in Table 1. Also the carbon fraction and concentrations are given, which were derived from the applied quantities of blend components, the purity and the average molecular formula of the blend components, and the sample density [4].

An average molecular formula of C₆.5₃H₁₁.₅₃ (89.89 g/mole) was derived from ¹H-NMR and ¹³C-NMR (using 1,4-dioxane as the internal standard, 10% m/m) and GC-MS analysis [4].

¹⁴C Analysis

The fuel samples (10 mL) were combined with OptiPhase HiSafe2 (10 mL) and analyzed for 5.5 hours. A spectrum window starting from Ch 125 was applied to exclude a contribution from chemiluminescence, which was observed with the gasoline-ethanol mixtures only. High bias can also be used in discrimination of chemiluminescence with Quantulus. To determine counting efficiencies, the initial measurements were followed by internal standardization, i.e. adding 100 μl fossil gasoline containing 2090 DPM of [4-¹⁴C]-cholesterol (product number 1210-122) to each sample. Total counting time of 5.5 hours was composed of cycles of 30 minutes each, allowing statistical verification of sample stability during counting. Background samples had no ¹⁴C activity, i.e. they were either fossil fuel samples or synthetic ethanol.

Results and discussion

A fuel’s ¹⁴C activity is a direct measure of its biocarbon concentration (or the carbon fraction with a biological origin). ¹⁴C analysis of a fuel sample of unknown composition thus provides the concentration of biocarbon originating from the biofuels components, which may be different from the amount of biofuel in the total fuel mixture. The carbon content of a fuel can be derived from standard compositional analysis and density measurements. Bioethanol is considered in the present work to be representative for all kinds of biofuels containing carbon.

¹⁴C analysis of gasoline-ethanol mixtures by LSC

The ¹⁴C activity of each gasoline-ethanol mixture was measured by LSC (Table 1). For fossil fuel samples with a small content of bioethanol, the error percentages in

Table 1. Composition of fuel mixtures and ¹⁴C LSC analysis, 5.5 h counting

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bioethanol (% m/m)</th>
<th>Fossil ethanol (% m/m)</th>
<th>ULG95 (% m/m)</th>
<th>Biocarbon content (mol/L)</th>
<th>Net activity and counting error (Bq/l)</th>
<th>Error</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>34.39</td>
<td>100.6</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>10.64</td>
<td>89.36</td>
<td>0</td>
<td>3.29</td>
<td>9.32</td>
<td>0.3</td>
<td>2.7</td>
</tr>
<tr>
<td>5</td>
<td>10.01</td>
<td>89.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>5.18</td>
<td>94.82</td>
<td>0</td>
<td>1.7</td>
<td>4.9</td>
<td>0.2</td>
<td>3.8</td>
</tr>
<tr>
<td>7</td>
<td>1.99</td>
<td>98.01</td>
<td>0</td>
<td>0.65</td>
<td>1.91</td>
<td>0.2</td>
<td>4.7</td>
</tr>
<tr>
<td>8</td>
<td>1.02</td>
<td>98.98</td>
<td>0</td>
<td>0.33</td>
<td>1.08</td>
<td>0.2</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>0.55</td>
<td>99.45</td>
<td>0</td>
<td>0.18</td>
<td>0.79</td>
<td>0.2</td>
<td>5.5</td>
</tr>
<tr>
<td>10</td>
<td>50.21</td>
<td>49.79</td>
<td>0</td>
<td>17.26</td>
<td>51.7</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>98.05</td>
<td>1.95</td>
<td>0</td>
<td>33.72</td>
<td>99.2</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>12</td>
<td>99.01</td>
<td>0.99</td>
<td>0</td>
<td>34.05</td>
<td>99.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>13</td>
<td>99.50</td>
<td>0.5</td>
<td>0</td>
<td>34.22</td>
<td>100.4</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>
\(^{14}\)C activity are higher than for bioethanol samples with a small quantity of fossil ethanol. Nonetheless, errors in \(^{14}\)C activity per liter clearly remain below 10% at a counting time of 5.5 hours per sample. A further reduction could be achieved by longer counting periods; error reductions of 29 and 60 percent were achieved by counting for 11 and 34 hours, respectively. Hence, the error reduction is inversely proportional to the square root of counting time.

The concentration of biocarbon ([C\(_b\)]) in samples 1-13 was calculated by using sample composition and density. ([C\(_b\)]) was plotted against \(^{14}\)C activity and a linear least squares fit gave an excellent correlation (Fig. 2). A calibration plot of ([C\(_b\)]) versus sample activity per unit volume is sufficient for determination of the biocarbon concentration.

When the molecular formula of the biofuel component is known, the concentration of a biofuel component in the fuel mixture can be calculated from the concentration of biocarbon that is derived from the \(^{14}\)C measurement. In the case that several biofuels types form the total fuel mixture, separation of the biofuel components may be required prior to individual \(^{14}\)C analysis.

Table 2. Merits and drawbacks of the proposed \(^{14}\)C fuel analysis methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Merit</th>
<th>Drawback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method A: CO(_2) & LSC</td>
<td>Less sample preparation than in method C, lower costs per evaluation, good instrument availability worldwide</td>
<td>Small sample activity due to the small amount of carbon accepted by Carbo-Sorb E, not sensitive for the lowest (^{14})C concentrations</td>
</tr>
<tr>
<td>Method B: AMS</td>
<td>High sensitivity, precise</td>
<td>High cost, mostly for cases in dispute or less than 10% carbon by weight</td>
</tr>
<tr>
<td>Method C: C(_6)H(_6) & LSC</td>
<td>High sensitivity, precise, good instrument availability worldwide</td>
<td>Slow sample preparation, small capacity, new synthesizers hard to acquire, benzene is carcinogenic</td>
</tr>
<tr>
<td>Method D: Direct LSC analysis</td>
<td>Minimal, fast sample preparation, good sensitivity, lower costs per evaluation, good instrument availability worldwide. LSC is the most widely used method for (^{14})C determination</td>
<td>Not in accordance with ASTM standard D6566-06, which discusses methods A, B and C. Color in fuel samples need to be removed</td>
</tr>
</tbody>
</table>

The specific \(^{14}\)C activity for carbon is higher in 2005 than in 1950 because of atmospheric atomic bomb testing after 1950. A treaty in 1963 stopped these tests and a decrease in the specific \(^{14}\)C activity level resulted. The specific \(^{14}\)C activity of carbon was about 17.80 DPM/g in 1980, 15.75 DPM/g in 1990, and 14.78 DPM/g in 2000.

Table 3. Comparison of methods for \(^{14}\)C based analysis. (Method A through C analysis is based on Noakes et al. Tables 2 and 3 [12])

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample preparation time (h)</th>
<th>Analysis time (min)</th>
<th>Analysis cost** (USD)</th>
<th>Instrument $$(000)</th>
<th>Sample size (g)</th>
<th>Contamination risk***</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method A* Liquid scintillation counting with CO(_2) trapping</td>
<td>3</td>
<td>1300</td>
<td>250</td>
<td>150</td>
<td>0.2–1</td>
<td>Moderate</td>
<td>< 9</td>
</tr>
<tr>
<td>Method B* Accelerator mass spectrometry (AMS)</td>
<td>2</td>
<td>20</td>
<td>400</td>
<td>2000</td>
<td>0.001</td>
<td>High</td>
<td>< 1</td>
</tr>
<tr>
<td>Method C* Liquid scintillation counting with benzene synthesis</td>
<td>3</td>
<td>1300</td>
<td>250</td>
<td>150</td>
<td>2–10</td>
<td>Low</td>
<td>< 2</td>
</tr>
<tr>
<td>Method D Direct liquid scintillation analysis</td>
<td>0.1</td>
<td>360</td>
<td>150</td>
<td>100</td>
<td>5–10</td>
<td>Low</td>
<td>< 6</td>
</tr>
</tbody>
</table>

* ASTM standard method for bio-based materials analyses.
** Includes the depreciation of equipment.
*** Risk of contaminating the sample with ambient biological carbon during the process.
The reference level in 1950 was 13.56 DPM/g. Hence, the variation in specific 14C activity for carbon over the last decades affects the precision in the determination of the biocarbon content.

Comparison of direct method to methods A through C

Direct biofuels measurement has clear advantages over the methods presented in the ASTM standard D6866-06. Cost, sensitivity and speed are in favor of the direct liquid scintillation counting method (Tables 2 and 3). Color in direct liquid scintillation is problematic and its removal not straightforward. As neither oxidization nor benzene synthesis are required, the method is suitable to laboratories with normal facilities and personnel trained for routine LSC.

Conclusions

14C analysis of mixtures of bioethanol, fossil gasoline and fossil ethanol by LSC showed that the fraction of carbon that originates from biofuel components (biocarbon fraction) can be determined quantitatively. AMS and LSC results were well correlated [4].

The production date of the biobased fuel needs to be known. Older fuel would have less 14C than the one produced of fresh biogenic material.

Direct mixing of sample and cocktail allows larger sample volumes and radioactivity in vials than CO$_2$ absorption method. It also allows usage of Teflon® coated plastic and non-radioactive vials, which cannot be used in CO$_2$ method (and benzene counting).

Direct 14C analysis of bio-based materials, plastics for instance, which are dissolvable in aromatic solvents, is analogous to the analysis of biofuels presented in this note.

Acknowledgment. Fuel samples were provided by Kuwait Petroleum Research & Technology b.v., P. O. Box 545, NL-3190 AL Hoogvliet, the Netherlands for a joint 14C analysis project.

References

8. Gupta SK, Polach HA (1985) Radiocarbon dating practices at ANU. Handbook. Radiocarbon Laboratory, Research School of Pacific Studies, Australian National University, Canberra