A comparison of selected natural radionuclide concentrations in the thermal groundwater of Mszczonów and Cieplice with deep well water from Łódź city, Poland

Paweł Grabowski, Magdalena Długosz, Piotr Szajerski, Henryk Bem

Abstract. A simple procedure using α and γ spectrometry for the determination of natural radionuclides in two Polish geothermal water samples from Mszczonów and Cieplice, as well as in deep well groundwater from the city of Łódź, was described. The ²²²Rn radionuclide was directly extracted from 10 cm³ water samples to a scintillator solution placed in scintillation vials and determined by an liquid scintillation (LSC) technique with α/β separation. The activity concentrations of three radium nuclides: ²²⁸Ra(²²⁸Ac), ²²⁶Ra(²²²Rn), ²²⁴Ra, as well as ²¹⁰Pb and ²²⁸Th were measured by γ spectrometry with an HPGe detector after their preconcentration on hydrated MnO₂. ²¹⁰Po was deposited on a silver disc from dissolved MnO₂ precipitate after γ -spectrometry analysis and measured by α spectrometry. The concentration of ²¹⁰Pb in the examined samples was below the detection limit of the method (< 6.2 mBq/dm³), whereas activity of its decay product ²¹⁰Po was in the range 0.35–1.4 mBq/dm³. Higher activities of ²²⁸Ra (46.7 mBq/dm³), ²²⁶Ra (67.8 mBq/dm³) and ²²⁴Ra (22.4 mBq/dm³) were observed for the deep well water in Łódź in comparison to those for geothermal water samples from Cieplice and Mszczonów. However, concentrations of all the measured radionuclides were below World Health Organization (WHO) reference activities (0.1 Bq/dm³ for ²²⁸Ra and 1 Bq/dm³ for ²²⁶Ra and ²²⁶Ra).

Key words: thermal groundwater • natural radionuclides • ICP-MS • co-precipitation

P. Grabowski, M. Długosz, P. Szajerski, H. Bem[™] Institute of Applied Radiation Chemistry, Technical University of Łódź,
116 Żeromskiego Str., 90-924 Łódź, Poland, Tel.: +48 42 631 3195, Fax: +48 42 636 5008, E-mail: henrybem@p.lodz.pl

Received: 14 October 2009 Accepted: 27 October 2009

Introduction

It is expected that due to availability, and economic and environmental issues geothermal energy will play an important role in future worldwide energy budgets. However, because of the relatively high cost of deep drilling, the majority of the medium and low temperature geothermal water fields were in the last decade exploited for bathing, swimming pool heating and, to a lesser extent, for space heating [18]. On the other hand, an observed drinking water shortage or the necessity of arid land farming in many countries has resulted in increasing interest in using geothermal produced fluids for these purposes [13].

Now, in Poland there are several existing geothermal plants, and a few new geothermal installations are planned in the so-called Szczecin-Łódź geothermal district (Fig. 1).

Depending on factors of geothermal waters like their energetic potential (temperature of outcoming water) mineralization and chemical composition, they have been used almost exclusively in Poland for heating purposes, recreation and balneology [8, 14]. There are only three sites in Poland with sufficiently low mineralization thermal groundwater which can be, and in fact are, used as a source of drinking water. These places are Mszczonów, Cieplice and Słomniki. Thermal groundwaters from Mszczonów and Cieplice have a relatively low mineralization (~ 0.5 g/dm³ and below 1 g/dm³, respectively) in comparison with waters

Fig. 1. Localization of the geothermal systems [14].

from other sites in Poland: 3 g/dm³ in Bańska Biała or 5 g/dm³ in Uniejow [15, 16]. The thermal water from the Mszczonów wellbore, with its temperature of 42.2°C, comes from 1700 m below ground level, with an average flow rate of 50 m³/h. In Słomniki water is drawn from 300 m below the surface (flow rate 50–100 m³/h), thus its temperature is only about 20°C [15, 19].

In the case of utilization of geothermal water for balneological or drinking water purposes, exact chemical studies including the determination of trace elements and radionuclide concentrations must be performed. Thermal groundwater used as drinking water additionally must fulfill very restrictive regulations of radionuclide content. According to the Polish state regulations [25], which are in accordance with EU Council Directive 98/83/EC [12] and WHO recommendations [32], the committed effective dose for members of the public from 1 year's consumption of drinking water ($\sim 730 \text{ dm}^3$) should not exceed 0.1 mSv [32]. Consequently, the WHO guidance level values for activity concentrations in drinking water were calculated taking into account their dose conversion factors (mSv/Bq·dm⁻³) and corresponding activity concentrations, as shown in Table 1. The WHO protocol for radioactivity measurements in drinking water recommends, as the first step, determination of gross α and gross β activity [30, 32]. When gross α or gross β activity exceeds 0.5 and 1 Bq/dm3, respectively, determination of individual radionuclides must be performed. Water must not be used as drinking water when the measured activity

 Table 1. WHO guidance levels of natural radionuclides in drinking water [32]

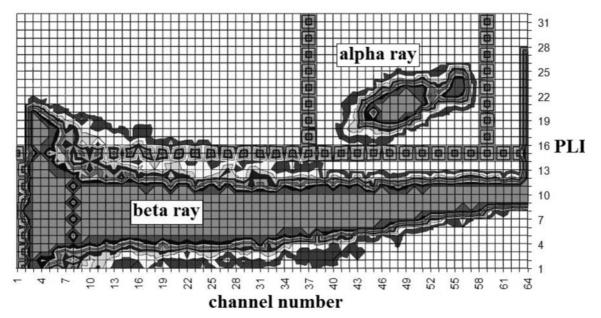
Radionuclide		Activity (Bq/dm ³)		
²³⁸ U		10		
²²⁶ Ra		1		
222 Rn		100		
²¹⁰ Pb		0.1		
²¹⁰ Po		0.1		
²²⁸ Ra		0.1		
²²⁸ Th		1		
²²⁴ Ra		1		

of an individual radionuclide is equal or higher than the guidance level values.

As is evident from Table 1, the most dangerous natural radionuclides in drinking water are ²¹⁰Po, ²¹⁰Pb and ²²⁸Ra, whose permissible activities in water must not exceed 0.1 Bq/dm³. These three nuclides belong to a natural decay series and occur in very low concentrations in surface water. However, the activity of these and other natural radionuclides in underground waters depends on the activity of soil and rocks which surround groundwater resources. In most cases of groundwater samples ²³⁸U concentrations are lower than its progeny radionuclides, what is caused by low transfer of this nuclide to water from bedrock [31].

Concentrations of radionuclides in natural water are usually rather low [9] and before their determination a preconcentration step must be applied. In the last decades, for the determination of low activities of uranium, thorium and other long-lived radionuclides, the inductively coupled plasma with mass spectrometry (ICP-MS) method was successfully applied [1–5, 20, 29]. However, because of the high equipment costs for this method, radiometric procedures are still widely used for radionuclide determination in water. An effective and simple method of radionuclide concentration from water samples is their co-precipitation with hydrated manganese dioxide [28]. This method was successfully applied for uranium, thorium and radium radionuclides as well as for ²¹⁰Po and ²¹⁰Pb. After preconcentration of radionuclides, they can be measured by γ or α spectrometry methods or also by LSC methods [11, 21, 22, 26, 27].

Although concentrations of radon, uranium and radium isotopes in Polish groundwaters and in bottled mineral waters have been well documented [6, 17, 22–24, 27], until now the activities of some radionuclides were reported for geothermal water from the Uniejow plant only [7].


The aim of these studies was the elaboration of a simple radiochemical procedure for determination of the activity of principal natural radionuclides occurring in thermal groundwater (Mszczonów, Cieplice). For comparison, the activities of the same radionuclides were determined in one of the several deep wells (Lower Cretaceous geological formation) connected to the Łódź city municipal water system with mineralization ~ 0.2 g/dm³. Additionally, natural radionuclides in Łódź tap water, which is a mixture of the deep well groundwater with surface water from Sulejów reservoir, were also measured.

Experimental

Materials and methods

Sampling

Thermal groundwater samples from Mszczonów were collected from Geotermia Mazowiecka S.A. and in the case of Cieplice directly from the public well situated in the centre of the city. Drinking water samples from Łódź were taken from two locations: deep well water from the Dąbrowa borehole and from the Łódź municipal water network in the centre of the city. All chemicals

Fig. 2. Energy spectrum of ²²²Rn as pulse shape discrimination (PSD) plot (2D) *x*-axes \times 16 = channel number, *y*-axes \times 32 = PLI (pulse length index).

were of analytical grade purity, used as provided. Standard reference material IAEA-327 was supplied by the International Atomic Energy Agency (IAEA).

Sample preparation

For the determination of γ -emitting radionuclides, a preconcentration step on hydrated manganese dioxide from 5 dm³ of water samples was applied, according to procedure described elsewhere [7].

Radioactivity measurements

²²²Rn activity was measured by means of a liquid scintillation technique, after its direct extraction in scintillation vials from 10 cm³ of analysed water using 10 cm³ of a Ultima Gold F scintillation cocktail. Samples counting were performed for 40,000 s using a BetaScout (PerkinElmer) liquid scintillation counter with α/β separation option, after at least 3 h necessary for establishing radioactive equilibrium of ²²²Rn and its progeny (²¹⁸Po and ²¹⁴Po).

Optimal α/β separation conditions in order to eliminate the overlapping of the β pulses to the α region were chosen for this device after preliminary counting and setting the discrimination levels. Figure 2 shows that complete distinction of α from β pulses is possible for the Ultima Gold F scintillation solution for pulse length index (PLI) equal to 15. The observed background in the chosen α region was very low < 0.2 cpm. The activity of γ -emitting radionuclides adsorbed on a MnO₂ precipitate was determined using a Canberra spectrometry system with an HPGe detector with a relative efficiency of 25%, according to the procedure described elsewhere [7].

Because of the relatively high detection limit for ²²⁶Ra determination from its γ line of 185.6 keV (8.5 mBq/dm³ according to the Curie criterion [10]) for the Mszczonów thermal groundwater ²²⁶Ra was additionally determined by the liquid scintillation method after extraction of the ²²²Rn from 0.5 dm³ samples [6].

The samples of manganese dioxide precipitate after γ -spectroscopy measurements were digested with 3% (w/w) solution of hydrogen peroxide in 70 cm³ of 1 M HCl. The obtained solutions were transferred to a teflon vial, and spontaneous deposition of ²¹⁰Po on a silver disc was performed for about 8 h at a temperature of about 80°C. ²¹⁰Po after its deposition on the silver plate was counted using the α -spectrometry system with a passivated implanted planar silicon (PIPS) semiconductor detector (Canberra 7401VR alpha spectrometer) for 2–3 days.

Quality assurance

The accuracy of the analytical procedure was determined in an independent experiment by checking the recovery of ²¹⁰Po, ²¹⁰Pb, ²²⁶Ra, ²²⁸Ra and ²³⁸U radionuclides from 1 g of the mineralized standard reference material: SRM-IAEA 327 "Radionuclides in soil". The results are presented in Table 2.

Nuclide	Reference value (mBq/g)	Measured value (mBq/g)	Recovery (%)
²¹⁰ Po	49.84	49.33 ± 3.95	99.0
²¹⁰ Pb	49.84	48.08 ± 4.49	96.5
²²⁶ Ra	33.89	34.04 ± 11.51	100.5
²²⁸ Ra(²²⁸ Ac)	38.7	35.21 ± 3.65	91.0
²³⁸ U(²³⁴ Th)	32.8	32.95 ± 5.07	100.5

Nuclides	γ line (keV)	$A_{Mszczonow}$ (mBq/dm ³)	A_{Cieplice} (mBq/dm ³)	$A_{Lodz tap}$ (mBq/dm ³)	$A_{Lodz deep well}$ (mBq/dm ³)
²³⁸ U(²³⁴ Th)	63.3	< 4.7	≤ 4.7	< 4.7	< 4.7
²²⁶ Ra	185.6	14.8 ± 4.3	50.0 ± 5.3	< 8.5	67.8 ± 6.5
²²⁶ Ra(²²² Rn)	LSC	18.0 ± 0.6	-	-	_
²²² Rn	LSC	1930 ± 34	9100 ± 560	1093 ± 20	2860 ± 190
²¹⁰ Pb	46.5	≤ 6.2	< 6.2	< 6.2	< 6.2
²¹⁰ Po	α counting	1.4 ± 0.1	0.4 ± 0.1	< 0.2	≤ 0.2
²²⁸ Ra(²²⁸ Ac)	911.2	15.3 ± 1.4	10.4 ± 1.5	< 3.3	46.7 ± 2.8
²²⁸ Th	84.3	29.1 ± 5.9	37.9 ± 6.0	< 12.6	116.4 ± 9.4
²²⁴ Ra	241.0	≤ 5.7	< 5.7	< 5.7	22.7 ± 4.5

Table 3. Concentration of the main natural radionuclides in water samples

Results

The results of activity concentration of measured radionuclides in different water samples are presented in Table 3.

The measured activities, except for ²²²Rn, were generally very low. It is interesting that the activity of ²²⁴Ra, ²²⁶Ra and ²²⁸Th in the deep well water samples coming from the Lower Cretaceous geological formation were higher than those for thermal groundwater from Cieplice and Mszczonów, but remarkably lower than the corresponding activities for the previously determined thermal groundwater for Uniejow [7]. The slightly higher temperature of the Mszczonów (42°C) and Cieplice (30°C) thermal groundwater in comparison with deep well water (4°C) does not influence the mobility of these radionuclides from the adjacent geological formations, and the low concentrations of natural radionuclides in these waters are caused by a remarkable input of infiltrated surface water to their underground reservoirs.

The drinking tap water in the Łódź municipal network is a mixture of water coming from several deep wells and surface water pumped from the Sulejow water reservoir. Therefore, concentrations of natural radionuclides in this kind of water (additionally purified in the water supply plants) is extremely low (except for ²²²Rn) below the detection limits.

Among the radionuclides in all the investigated water samples, the highest activities were observed for ²²²Rn radionuclide. Depending on the origin of water, the ²²²Rn activity varied between 1093 mBq/dm³ and 9100 mBq/dm³ for the Cieplice samples (Table 3). The last values are in close accord with the data for radon concentration in the groundwaters of the Sudety Mountains where elevated activities of this radionuclide were observed [24].

It is worth underlining that the concentrations of all measured radionuclides were below the recommended WHO values.

Conclusion

- Co-precipitation of the natural radionuclides with hydrated manganese dioxide from a large volume of water samples can be used for the sample preparation before γ-spectrometry counting.
- Activities of natural radionuclides from ²³⁸U and ²³²Th decay series in thermal groundwater from Mszczonów and Cieplice, and deep well water in

Łódź are below the threshold limit values according to EU and WHO directives for drinking water.

- The low levels of natural radionuclides in the thermal groundwater from Cieplice and Mszczonów, in contrast to the Uniejow region thermal groundwater, indicate a remarkable input of infiltration of surface waters with a low mineralization to their underground reservoirs.
- 4. From the radiological points of view both thermal groundwaters from Mszczonów and the Cieplice public well can be used as drinking water.

Acknowledgment. We are grateful to Geotermia Mazowiecka S.A. and Wodociągi Łódź for assistance during samples collection. We gratefully acknowledge the financial support by the European Union from European Public Funds and national budget within the framework of the Operational Integrate Programme of Regional Development and the Protection of the Environment and Water Management Fund in Łódź.

References

- Becker JS (2002) Inorganic mass spectrometry of radionuclides (invited review). Spectrosc Eur 14;6:8–16
- Becker JS (2003) Determination of long-lived radionuclides by ICP-MS and LA-ICP-MS (invited review). Spectrochim Acta B 58:1757–1784
- Becker JS (2005) ICP-MS and LA-ICP-MS for isotope analysis of long-lived radionuclides (invited review). J Mass Spectrom 242:183–195
- Becker JS (2010) Determination of long-lived radionuclides in nuclear, environmental and clinical samples by ICP-MS and LA-ICP-MS. In: Gross ML (ed) Chapter in: Encyclopedia of mass spectrometry. Vol. 5. Elemental and isotope ratio mass spectrometry. Elsevier, Boston
- Becker JS, Sela H, Dobrowolska J, Zoriy M (2008) Recent applications of isotope ratio measurements y ICP-MS and LA-ICP-MS on biological samples and single particles. J Mass Spectrom 270:1–7
- Bem H, Bem EM, Majchrzak I (1998) Comparison of two methods for ²²⁶Ra determination in mineral water. Nukleonika 43;4:459–468
- Bem H, Olszewski M, Kaczmarek A (2004) Concentration of selected natural radionuclides in the thermal groundwater of Uniejów. Nukleonika 49;1:1–5
- Bujakowski W (1999) Geothermal projects in Poland. Technika Poszukiwań Geologicznych Geosynoptyka i Geotermia 4/5:132–141 (in Polish)
- 9. Chau ND, Michalec B (2008) Natural radioactivity in bottled natural spring, mineral and therapeutic waters in Poland. J Radioanal Nucl Chem 279;1:121–129

- Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391:127–134
- Desideri D, Meli MA, Feduzi L, Roselli C, Rongoni A, Saetta D (2007) ²³⁸U, ²³⁴U, ²²⁶Ra, ²¹⁰Po concentration of bottled mineral waters in Italy and their dose contribution. J Environ Radioact 94:86–97
- European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commum L330, 5 December 1998
- Gallup DL (2007) Treatment of geothermal waters for production of industrial, agricultural or drinking water. Geothermics 36:473–483
- Górecki W (2006) Atlas of geothermal resources of mesozoic formations in the Polish lowlands. AGH University of Science and Technology, Kraków
- Kępińska B (2003) Current geothermal activities and prospects in Poland – an overview. Geotherm 32:397–407
- Kępińska B (2003) Current state and prospects of geothermal energy implementation in Poland. Appl Energy 74:43–51
- Kozłowska B, Walencik A, Dorda J, Przylibski TA (2007) Uranium, radium and ⁴⁰K in bottled mineral waters from Outer Carpathians, Poland. Radiat Meas 42:1380–1386
- Lund JW, Freeston DH (2001) World-wide direct uses of geothermal energy 2000. Geotherm 30:29–68
- Nowak W, Stachel AA (2004) Heat-generating geothermal plant in Poland – present and planned state. Czysta Energia 34:50–55 (in Polish)
- Pawlak Z, Rabiega G (2002) Comparison of inductively coupled plasma-mass spectrometry and radiochemical techniques for total uranium in environmental water samples. Environ Sci Technol 36:5395–5398
- 21. Pietrzak-Flis Z, Kamińska I, Chrzanowski E (2004) Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland. Nukleonika 49;2:69–76

- 22. Pietrzak-Flis Z, Suplińska MM, Rosiak L (1997) The dietary intake of ²³⁸U, ²³⁴U, ²³⁰Th, ²³²Th, ²²⁸Th, and ²²⁶Ra from food and drinking water by inhabitants of Wałbrzych region. J Radioanal Nucl Chem 222:189–193
- Przylibski TA, Dorda J, Kozłowska B (2002) The occurrence of ²²⁶Ra and ²²⁸Ra in groundwaters of the Polish Sudety Mountains. Nukleonika 47;2:59–64
- Przylibski TA, Mamont-Cieśla K, Kusyk M, Dorda J, Kozłowska B (2004) Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). J Environ Radioact 75:193–209
- Regulation of the Polish Minister of Health (2000) Dz U (Law Gazette) no 82, item 937 from 4 October 2000 (in Polish)
- 26. Rihs S, Condomines M (2002) An improved method for Ra isotope (²²⁶Ra, ²²⁸Ra, ²²⁴Ra) measurements by gamma spectrometry in natural waters: application to CO rich thermal waters from the French Massif Central. Chem Geol 182:409–421
- Skwarzec B, Strumińska DI, Boryło A (2001) The radionuclides ²³⁴U, ²³⁸U and ²¹⁰Po in drinking water in Gdańsk agglomeration (Poland). J Radioanal Nucl Chem 250;2:315–318
- Skwarzec B, Strumińska DI, Boryło A, Falandysz J (2004) Intake of ²¹⁰Po, ²³⁴U and ²³⁸U radionuclides with beer in Poland. J Radioanal Nucl Chem 261;3:661–663
- 29. US EPA (1994) Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry. Method 200.8, Ohio
- US EPA (2002) Radionuclides in drinking water: a small entity compliance guide. US Government Publishing Office, Washington
- Vesterbacka P (2005) ²³⁸U-series radionuclides in Finnish groundwater – based drinking water and effective doses. STUK, Helsinki
- 32. WHO (2006) Guidelines for drinking-water quality. Vol. 1. World Health Organization, Geneva