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Study of boron dilution phenomenon Yashar Rahmani,
. . Ehsan Zarifi,
in the core and fuel assemblies of Bushehr Ali Pazirandeh
VVER-1000 reactor in normal operating

conditions

Abstract. The spatial temperature distributions in fuel and coolant, results in appearing local changes in those elements
densities in the reactor core, and also due to the complete solubility of boric acid in the coolant, there will be a direct
correlation between the changes in the boron concentration and the coolant density. Because of the gradual reduction of
boron concentration, first a local positive reactivity will be inserted into the core which will cause slight thermo-neutronic
fluctuations in the reactor core. Of course, the trend of this process in the case of excessive reduction of the density of
the coolant and evaporation of water (accident scenarios) will be reversed and subsequently the negative reactivity will
be given to the system. With regard to the importance of this phenomenon, the spatial changes of boron concentration
in the core and fuel assemblies of Bushehr VVER-1000 reactor have been examined. In line with this, by designing a
complete thermo-neutronic cycle and by using CITATION, WIMS D-5 and COBRAN-EN codes, coolant temperature
distribution and boron concentration will be calculated through this procedure, which first by using the output results
of WIMS and CITATION codes, the thermal power of each fuel assembly will be calculated and finally, by linking these
data to COBRA-EN code and using core and sub-channel analysis methods, the three-dimensional (3D) calculations
of boron dilution will be obtained in the core as well as the fuel assemblies of the reactor.
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Introduction

The study of boron dilution is one of the important
subjects in the analysis of nuclear reactor behavior
in the steady state and transients. By solving neutron
transport equation in the defined geometry, the WIMS
D-5 [6] code calculates neutronic group constants and
in the continuation, the CITATION [3] code by solving
diffusion equations, calculates neutron flux and ther-
mal power for the entire defined areas. By linking the
thermal power distribution data (CITATION output)
to COBRA-EN [1] code and then mesh specifying and
solving mass, energy and momentum balance equations
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Fig. 1. Applied calculation flow chart.

In this work, WIMS D-5 and CITATION codes
were used in the neutronic calculations while COBRA-
-EN code was used in the thermohydraulic modeling.
Figure 1 shows the calculation flow chart that we have
used.

A procedure of neutronic calculations in the full core
modeling

In the first stage, using WIMS D-5 code, the neutronic
group constants which are needed in the CITATION
code were calculated by the following method. With
regards to the core structure and arrangement of the
fuel assemblies at the beginning of life (BOL) mode,
we modeled the fuel assemblies with 1.6, 2.4 and 3.62%
enrichments and a reflector. In order to calculate the
neutron flux and power density using CITATION code,
we coupled the codes and linked the output results of
WIMS D-5 to CITATION input file. The cyclic pro-
cess continued throughout the whole calculation until
the criterion was satisfied.

Fig. 2. The manner of regulating arrays used in modeling fuel
assembly by WIMS D-5 code.

Fig. 3. Regulating annuluses used in modeling fuel assembly
by WIMS D-5 code.

Regulating arrays of fuel assemblies in WIMS D-5
code

The position of fuel rods in each fuel assembly will be
defined in the 36 fold arrays which have been shown
in Fig. 2.

Also, in Fig. 3, the defining of complemented space
between rods depicted as 54 fold annulus in each fuel
assembly by WIMS D-5 code.

It should be noted that the initial temperatures of
the elements used in WIMS D-5 input file, are first
obtained on the basis of Point Kinetic model [4]. After
completion of the calculation cycle and attainment
of the correct temperature of the elements (by using
the link of COBRA-EN, WIMS D-5 and CITATION
codes), these element temperatures will be corrected
and the process will be repeated for the improvement
of the computational precision.

After this stage and attainment of each fuel assembly
group constants, by linking these data to the CITA-
TION input file (card 008-Macroscopic cross section),
the thermal power distribution will be calculated in
each fuel assembly, whose mesh specifying process in
the reactor core through CITATION code has been
shown in Fig. 4.

In the next stage, after calculation of the thermal
power distribution in the reactor core, through linking
these data to the COBRA-EN code, the rate of tem-
perature distribution in fuel and coolant will be gained
as well as the changes in the concentration of boric acid
dissolved in the coolant.

In Fig. 5, the meshes specifying process and arrange-
ment of channels in COBRA-EN code (by using core
analysis method) have been shown.

Now, by using the results gained through COBRA-
-EN code, the spatial changes in boron concentration
will be calculated in the core, which have been shown
in Figs. 6, 7 and 8.
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Fig. 5. Mesh specifying process and arrangement of channels
in COBRA-EN code on the basis of core analysis method.

Calculations of boron concentration changes in fuel
assemblies of the VVER-1000 reactor

At this stage, by using the results of CITATION code
(full core mode) in accordance with the conducted
mesh, the thermal power of each fuel assembly will be
calculated, and subsequently, in line with attaining the
thermal power distribution within each fuel assembly,
the input files of CITATION for each assembly will be
regulated.

The modeling description and cell processing of fuel
assemblies, has been shown in Figs. 9-13.

It should be noted that with regard to the variet-
ies of fuel assemblies and their comprising elements
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Fig. 6. Rate of changes in boron concentration in radial direc-
tion in the middle of the core.
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Fig. 7. Rate of changes in boron concentration in radial direc-
tion in the end of the core.
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Fig. 11. The arrangement of fuel rods of type 1 and 2 and

control rods in 3.62% fuel assembly.
[2], cell calculations have been conducted by using

WIMS code for cells with the enrichment 1.6, 2.4, 3.3,
power will be calculated by CITATION code in radial

and axial directions (for each fuel assembly) which in

3.7%, control rod, reflector and also burnable poisons.
Thereafter, the distribution of neutron flux and thermal

Fig. 12. Cell processing of 3.62% fuel assembly.
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Fig. 13. The definition of cells in WIMS D-5 code.

Fig. 10. Cell processing of 1.6 and 2.4% assemblies.
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Fig. 14. Mesh specifying for fuel assemblies with enrichments
1.6 and 2.4% in CITATION code.
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Fig. 16. Process of channeling fuel assembly according to
triangular channels (COBRA-EN code).

Fig. 14 the mesh specifying process has been shown for
an exemplary fuel assembly.

In the final stage of this study, by using COBRA-EN
code, the temperature distribution in fuel and the cool-
ant as well as changes in the concentration of soluble
boric acid will be calculated.

It should be noted that “sub-channel analysis” model
has been used in the thermohydraulic calculations of
each fuel assembly.

In Figs. 15 and 16, the arrangements of channels and
the exerted meshes have been shown, respectively.

As it has been shown in Figs. 15 and 16, in order to
increase the accuracy of calculations, the total area of
a fuel assembly has been divided into 600 triangular
channels.

The important point, which was found out in this
study is that, contrary to the general belief, the sym-
metrical susceptibility in the reactor core will not be
considered as a logical reason for the definition of
modeling geometry only for a symmetrical sector. This
circumstance will reduce the accuracy of calculations
and will cause occurrence of a false equal distribution
in the radial direction of the reactor core.

The rate of radial and axial changes of boron dilution
for the hot fuel assembly of VVER-1000 reactor has
been shown in Figs. 17-19. In Fig. 20, the rate of axial
changes of boron dilution for different fuel assemblies
has been shown, which, of course, due to the high num-
ber of output diagrams, reference has only been made
to the results in fuel assemblies that are considerably
different from each other.

Method of calculating positive reactivity insertion
caused by the boron dilution phenomenon in the
reactor core

With regard to the relation of boron concentration
changes to the temperature distribution in the coolant,
the need is being felt for calculations in the field of
reactivity insertion caused by this phenomenon.

In this study, by using the following correlation, the
positive reactivity caused by the boron dilution will be
calculated [5]:

(1) pp = 1.92 X 107 Cy(1 - f;)

where: pp — reactivity resulted by boric acid concentra-
tion changes; Cy —difference in boric acid concentration
in each region compared to the original concentration;
fo — the thermal utilization factor in the absence of
boron.

Where the f; parameter is given by:

VToa
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where: pr, and ppod — fuel and moderator density (Kg/m?);
e —uranium enrichment ratio; T, and Tp0q — fuel and
moderator temperatures (k); ®ge and Dpoq — thermal
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Fig. 17. Boron concentration changes in radial direction at the middle of the hot fuel assembly.
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Fig. 18. Boron concentration changes in radial direction at the end of the hot fuel assembly.

neutron flux in fuel and moderator (#/m*s); V4, and
Vimoa — fuel and moderator volumes (m?).

It should be noted that in the said correlation the
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Fig. 19. Boron concentration changes at axial direction of the
core in hot fuel assembly.

factor) and density, are calculated in each zone. In the
next step, the neutron flux in each fuel assembly will be
derived by using CITATION code.

In continuation, the temperature relation of each
of the said parameters will be calculated in each zone
in smart mode through programming. Furthermore,
with regard to the prevalence of fuels with different
enrichments in the reactor core (1.6, 2.4, and 3.62%)
we substitute the “e ”parameter in accordance with the
existing fuel enrichment in each zone in Eq. (2).

For the calculation of the absorption cross sections,
according to temperature changes in the fuel and cool-
ant, the following correlation is used [5].

(3) X = XO + (X(Tfuel - Tfuel()) + B(Tcoolam_
+ Y(Tfuel - ’Tfuel())2 + 8(Y‘coolam -

Tcoolant())
2
Tcoolanlo)

where: a,  and y — temperature coefficients; X, X, — the
temperature dependent and initial values of physical
constant; Trer, Teootant — NEW values of fuel and coolant
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temperatures; Tfuel()y Tcoolzmt() — fuel and coolant ref- Sub volume No. 6 (1.765(n) to2.118(m))
erence temperatures.

Now, with respect to the fact that in the above equa- Resctivty (45
tion for the calculation of neutronic cross sections, there TS
is a need to know the quadruple temperature coeffi- 20.0180.02
cients, therefore in order to solve this problem, by using =0016:0.018
the WIMS D-5 code for each fuel assembly in the four - :gg:;ﬂg:j
different temperatures, we calculate the absorption cross 80.01.0012
sections for different elements, then by putting them =0.0080.01
in the below equations and subsequently simultaneous 00.006-0.008
solving of these four fold equations, the temperature ibpospeon
coefficients will be calculated [4]. = 0.0.002

G, = Ga0 + a(Tfuell fuely )+B( coolant; coolan[o)
2
+ Y(Tfuell fuely ) + 6(Tcoolamt1 coolant, )
G, =0, + (T, — ffuel )+ B(Tooorant, — Teootant, ) Fig. 21. The rate of positive reactivity insertion (due to boron
) dilution phenomenon) in radial direction at the middle of the
(4) + Y(Tfuelz fuely ) + 8(Tcoolam2 ~ Tcoolant, ) core.
G, =0, + o(T, ey — fuelo )+ B(T, coolant, — coolamo) Sub volume No. 10 (3.117 (m) to 3.53 (m))
2
+ ’Y(rfueg - fuelo) +6(rcoolant3 - coolanlo) Resctivty (35)
— m0.024-0.026
Ga4 - Gao + (x(TfueL, fuel, ) + B(Tcoolant4 coolant, ) 0.022-0.024
2 00.02-0.022
+ 'Y(rfuel4 fuel, ) + 8(I-t:oolant4 - coolant, ) =0.018-0.02
0008
o0.014-0016

At the end, by using these temperature coefficients, m0.0120.014
we could easily calculate the absorption cross sections iyl
according to temperature changes in the fuel and mod- 00,0060 008
erator and then substitute them in Eq. (2). D0.004-0,006

The rate of radial and axial changes of positive re- :ghm;gmd
activity insertion for VVER-1000 reactor core has been '
shown in Figs. 21-23.

Fig. 22. The rate of positive reactivity insertion in radial direc-

tion at the end of the core.
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Fig. 23. Core average reactivity in each sub-volume (in axial
direction).

Conclusion

By observing charts 6 and 7, it will be noticed that,
due to the monotonous distribution of power in the
radial direction of reactor core, the boron concentra-
tion changes will result in minor in the middle and end
of the axial sub-volumes.

In Fig. 8, which shows the axial changes in boron con-
centration in the reactor core, it is noticed that contrary
to the results of previous diagrams, due to the existence
of cosine distribution of thermal power, the remarkable
changes are made in the boron concentration. This
phenomenon at the time of the occurrence of events
could cause considerable and destructive fluctuations
in the reactor core, which is proposed that the boric
acid injection be applied locally in these mentioned
sub-volumes.

Also, it is noticed in Figs. 17 and 18, the radial distri-
bution of boron acid in the hot fuel assembly has a lower
concentration in control rod channels, which is due to
non-arrival of control rods, and then, consequently,
these channels are filled with the coolant.

With regard to Figs. 19 and 20 it is noticed that,
due to the cosine distribution of thermal power in the
axial direction of fuel assemblies, boron concentration
changes in this direction of the core will start reduction
of density in the coolant.
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