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Introduction 

Egypt’s second research reactor is a multi-purpose reac-
tor of type materials test reactor (MTR) designed by 
the Argentinean company INVAP [9]. The reactor was 
constructed with the Egyptian anticipation by INVAP and 
went critical at the end of 1997. The reactor is 22 MW 
with uranium fuel enriched to 19.7%. It is cooled and 
moderated by light water and reflected by beryllium. The 
reactor core is situated inside an open pool surrounded 
by a chimney water injection system with forced upward 
cooling. 

An important issue in the operation of the nuclear 
reactor is the safety design of a reload pattern for each 
cycle. Usually, a number of fuel bundles is discharged at 
the end of a cycle (EoC), and the same number of fresh 
bundles is inserted in the core, while all bundles are re-
shuffled to a configuration that is optimal with respect to 
some performance criterion. There are several strategies 
for reloading. We consider the situation in which at each 
reload, the number of discharged bundles is the same. 

Having fixed the number of discharged bundles, it 
is possible to simply measure the remaining reactivity 
of the bundles at each EoC, and then find an optimal 
pattern using a subset of these bundles together with 
some fresh bundles. Another approach is to apply 
the same reload pattern every year. After repeating 
this for a number of years, the reactor will reach an 
equilibrium state, in which each cycle has the same 
characteristics. 
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One way to chose an optimization criteria is to 
search a loading pattern for which the cycle length 
will be a maximum before the reactor becomes sub-
critical, which means that the number of neutrons 
produced is less than the number of neutrons lost by 
absorption from the reactor, which stops the reactor 
operation. 

In our paper, we state the problem as a multi objec-
tive problem and we solve it using the genetic algorithm 
to find an optimal solution for the reload fuel pattern 
for the Egyptian second research reactor. This paper is 
organized as follows: in section ‘Physical description’ we 
give a general physical description background, in sec-
tion ‘Mathematical model’ we develop the mathematical 
optimization model using those physical description, 
section ‘The genetic algorithm’ deals with a brief discus-
sion of genetic algorithm also, we present our proposed 
algorithm for optimizing the Egyptian second nuclear 
reactor core patterns, in section ‘Results and discus-
sion’ we discuss the results, the final conclusion being 
in section ‘Conclusion’. 

Physical description 

In a nuclear reactor core, the desired energy is obtained 
by a controlled fission chain reaction. The fission of a 
nucleus into two smaller nuclei is induced by the capture 
of a free neutron producing a large amount of energy, 
together with some new free neutrons. The state of the 
reactor depends on the number of free neutrons in the 
core. The neutron flux, therefore, plays a major role in 
models describing the reactor processes. 

A popular way to describe the neutron flux in the 
reactor core is to consider the production, absorption 
and transport of neutrons as a diffusion process. More 
detailed description can be found in [2, 3, 7]. 

Let X be the space of the core and the surrounding 
water, in a coordinate system that has yet to be specified, 
then for any position x ∈ X we distinguish the following 
types of cross-sections:

Ω – f
1(x), Ωf

2(x) – fission cross-section of the fast and 
thermal group, the probability per unit path length 
that a neutron in the fast or thermal group will be 
absorbed by a nucleus to cause a fission reaction. 
Ω – a

1(x), Ωa
2(x) – absorption cross-section of the fast 

and thermal group, the probability per unit path 
length that a neutron in the fast or thermal group 
will be absorbed by a nucleus, 
Ω – s(x) – down scattering cross-section from the fast 
to the thermal group, the probability per unit path 
length that a fast neutron is absorbed by a nucleus 
and immediately re-emitted at an energy level in 
the thermal group. 
We will define the following parameters: 
D – 1(x), D2(x) – the position dependent diffusion coef-
ficients for the fast and thermal group, 
ν – 1, ν2 – the average number of fast neutrons, pro-
duced by fission reactions that are induced by neu-
trons in the fast and thermal group, 
υ – 1, υ2  – the average neutron speed in the fast and 
thermal group, 
G – i,j – the probability that a neutron produced in the 
node j will be absorbed in the node i. 

Given those parameters, we can now define the 
neutron in the core by a set of diffusion equations. 

φ – 2(x,t), φ2(x,t) – the neutron flux for the fast and 
thermal group. 
So, we have to specify the problem dimensions. 

The following size constants are used: N is the number 
of nodes in the core; M is the number of discharged 
bundles at EoC; L is the number of age group “cycle 
time” in the core; L = N/M; T is the number of time 
steps; t is the time variables. 

Also, we have to define the variables: k∞
i,t is the aver-

age infinite multiplication factor of the bundle in node 
i; φi,t is the average fast neutron flux at node i; kt

eff is the 
effective multiplication factor of the reactor core. 

Then, we can write the set of time dependent diffu-
sion equation for the fast and thermal group as [3] 

(1) 

(2) 

These equations are stated in the general form: 

     Neutron gain = rate of change – diffusion term 
                             + neutron loss 

when the neutron gain by production and neutron loss 
by absorption and diffusion are exactly equal, then the 
flux becomes independent of the time, and the reactor is 
said to be critical. So, under certain conditions, we may 
assume that φ(x,t) can be separated into T(t) φ(x), giving 
time dependent relations, that are not discussed here, 
and space dependent equations. These space dependent 
equations can only have solutions if we introduce an 
additional degree of freedom in the system. 

This is obtained by introducing an eigenvalue λ to 
the system: 

(3) 

(4) 

So, the effective multiplication factor can be defined 
as follows: 

(5)  

Then

Equation (4) can be rewritten since the thermal 
group diffusion is eliminated by neglecting the diffusion 
term, which can be possible since the neutron leakage 
in the thermal group is relatively small [3]. 
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(6)  

which can be substituted in Eq. (3) to obtain the eigen-
value differential equation 

(7) 

Some simplifications 

We need to simplify (7) in order to derive our model. 
First, we will assume that the diffusion coefficient D1, 
as well as some cross-sections are position independent. 
The fission cross-section Ωf strongly depends on burn-
-up and is very position dependent. The absorption 
cross-section, especially for the thermal group, also 
depends on burn-up. However, in the 1/1/2 group ap-
proximation, the downscattering of neutrons is the most 
important mechanism of removing neutrons since we 
neglect thermal diffusion. This downscattering is almost 
independent of burn-up since it is mainly determined by 
the reactor coolant [10]. So, we can redefine: 

We now use Ωf
1(x) and Ωf

2(x) to define the new 
variable 

k∞(x) in the following way 

(8) 

The variable k∞, the infinite multiplication factor, 
is interpreted as the ratio of local neutron production 
and absorption. The eigenvalue differential Eq. (7) 
then transforms to 

(9) 

with 

known as the fast diffusion length. 

Fuel burn-up 

During reactor operation, the fission reactions cause 
burn-up of the fuel. Therefore, the fission cross-sections 
Ωf

1(x) and Ωf
2(x) decrease, also the absorption cross-

-sections also change. On the one hand, they decrease 
because of the decreasing atom density of fissionable 
nuclides. On the other hand, they increase because the 
fission products absorb neutrons, without causing a fis-
sion or scattering reaction. Moreover, most of the mate-
rial is not fissionable and will not change in time [5]. We 
assume for the moment that we may neglect the changes 

in absorption cross-sections and only concentrate on 
changes in the fission cross-sections. So, we introduce 
time dependence on the following variables: 

where t ranges from the begin of a cycle (BoC) to the 
end of cycle (EoC). 

(10) 

(11) 

where σa is the so-called microscopic cross-section. 
From Eqs. (10) and (11) and by using Eq. (8) we can 

derive a description for the decay of k∞(x,t): 

(12) 

Since k∞ now is time dependent, the flux distribution 
also is time dependent, so, that we have to redefine the 
eigenvalue differential Eq. (9) 

(13)  

(14)     φ(x, t) = 0,   x ∈ boundary of  x, 

(15) 

(16)  

where, Pc is the required total power over the whole core, 
and μf is the amount of energy released per fission. 

Then, 

(17)  

So, Eq. (16) becomes: 

(18) 

and the decay Eq. (12) is replaced by 

(19) 
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Mathematical model 

In this section, we will develop a nodal core model that 
describes the reloading patterns and the corresponding 
evolution of the core from BoC to EoC. The evolution 
of the core during a cycle is computed in a fixed num-
ber of discrete time steps. At each EoC, the same fixed 
number of old fuel bundles is discharged, which are all 
of the same age. The objective of our optimization is 
to maximize the effective multiplication factor at EoC, 
while operational constraints are satisfied. 

The necessary equations can be divided into four 
different types. The first class of equations describes 
the core evolution during the cycle, given the infinite 
multiplication factors at BoC. The second class specifies 
a loading pattern. The third class describes the reload-
ing operation itself; here the equilibrium cycle property 
is specified. The fourth class are the operational con-
straints. We will introduce the four types in sequence. 

and, we can introduce,

From Eqs. (17), (18) and (19) :

(20)  

(21) 

(22)  

Fuel management scheme 

The start up core configuration set for the reactor 
operation as designed by INVAP is shown in Fig. 1. It 
consists of three types of fuel elements. In addition to 
the standard fuel elements, two other types with lower 
U-235 contents are used. These fuel types are as follows: 
8 fuel elements of 148.2 gm U-235 per element; 14 fuel 
element of 209.0 gm U-235 per element; 7 fuel element 
of 404.7 gm U-235 per element. 

The fuel management strategy suggested by the 
reactor designer for the reactor operation is based on 
considering the reactor core as being partitioned into 
eight zones. In every fuel cycle two zones are involved, 
in which two fresh fuel elements are inserted, one 

spent fuel element is removed and 4 fuel elements are 
shuffled in the core. By this fuel management scheme, 
the reactor is operated in periodic four fuel cycles. The 
movement in these 4 cycles is as follows [8]. 

From this representation, we can read that nodes 6, 5 
and 11 always contain fresh bundles. During reloading, 
the bundle from node 16 is discharged, the one from 
11 is moved to node 16, a fresh bundle is inserted at 
position 6, etc. 

A fixed fuel cycle length was assumed, which was 
18 full power days. Figure 2 illustrates the fuel move-
ments in the periodic 4 fuel cycles. 

Loading pattern specification 

At each EoC, the same number of old fuel bundles is 
discharged, and all those removed bundles are of the 
same age. Here we take the Egyptian second research 
reactor as a case of study; we can describe the life of the 
bundles in the core during L cycles as a trajectory nota-
tion [12]. For example, suppose we have 16 nodes in the 
core, and at each EoC four bundles are discharged. 

So, we can formulate the problem in optimization 
context by describing the trajectories in the following 
way xi,l,m = {1

0 in which, xi,l,m equals 1, if node i will contain 
the bundle of age l from trajectories m equal 0, other-
wise, where i = 1, …, N; l = 1, …, L; m = 1, …, M, of 
course, we need to describe the necessary variables xi,j,m 
in a set of equations: Fig. 1. The fuel movement in the periodic 4 fuel cycles.

Fig. 2. First core configuration: FE – 404.7 gm U-235; 1FE 
– 148.2 gm U-235; 2FE – 209.0 gm U-235. 
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Reloading operation 

The reloading equations consists of two terms; in the 
first term we use the variables xi,l,m to determine whether 
node i contains a fresh bundle after reloading, and assign 
to k∞

i,1 the value kfresh if this is the case. If not, then the 
second term determines from xi,l,m whose bundle (l, m) 
is in node i. The total reloading equation is given by 

(23)  

We can simplify the reloading equation in the form 

(24)  

Not all loading patterns are allowed. For safety rea-
son, it is required that the maximal power in one bundle 
is not too large. This peaking constraint is applied for 
every node at any time, and it is stated as follows: 

(25)  

where f lim is a value greater than 1. 
Suppose a bundle from a non diagonal position has 

to be reloaded into a diagonal position. Because this 
diagonal position belongs to two octants, so, we can re-
quire that a bundle is assigned to two diagonal positions 
simultaneously, with a half the volume in one position, 
and a half the volume in the order position. When in 
the next cycle these two half bundles are placed in one 
node, the composed bundle has at BoC average proper-
ties of two diagonal boundless at EoC. This is modeled 
by introducing a volume vector V = V1,…,VN, where Vi 
is ½ if i is the diagonal node, and Vi is 1 for all other 
nodes. Now, the number of different ages in the core L 
times the number of fresh bundles M is no longer equal 
to N, the number of nodes in the octant core is 

The restriction that each bundle is in exactly one 
node, now is replaced by the restriction that each bundle 
is in one or two nodes with total volume 1 

After reloading, a bundle is given the average properties 
of its predecessors: 

The power normalization has to be performed on the 
octant core: 

So, the objective of the optimization is to maximize the 
effective multiplication factor at EoC, we can formulate 
it as follow 
      max kT

eff. 

Now, we can list a complete model of the octant 
core: 

Subject to: 

where

 

The genetic algorithm 

Genetic algorithms (GA’s) were introduced by Holland 
in the 1970s [6] not to solve a particular problem, but to 
investigate the effects of natural adaptation in stochastic 
search algorithms. GA uses three main types of rules at 
each step to create the next generation from the cur-
rent population. Selection rules select the individuals, 
called parents that contribute to the population at the 
next generation. Crossover rules combine two parents 
to form children for the next generation. Mutation 
rules apply random changes in individual parents to 
form children computation, select the next population 
by computations that involve random choices [11]. The 
simple genetic algorithm follows the structure depicted 
in Fig. 3. Each of these operations will be described in 
the following subsections [4]. 

Selection plays a central role in genetic algorithms 
determining how individuals compete for gene survival. 
Selection weeds out the bad solutions and keeps the 
good ones. The goal of GA is essential in finding a set 
of parameters that maximize or minimize the output 
of a function or fitness. An individual with the best fit-
ness is then selected to be a part of the next generation. 
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Selection in GA’s is usually done on the whole original 
population and usually is repeated for all individuals in 
the population [13]. 

The simple genetic algorithm can be mathematically 
described as:

For each chromosome  – Si, i = 1,2,…pop_size compute 
the fitness value 

(26)  eval(Si) = f(Si) 

Compute the total fitness of the population  –

(27) 

Compute the probability of a selection  – pi for each 
chromosome Si 

(28)  pi = eval(Si)/F 

Compute the cumulative probability of a selection  –
qi for each chromosome Si 

(29) 

Generate a random number  – r ∈ [0,1] 
If  – r    q1 then select the first chromosome S1, oth-
erwise select the i-th chromosome Si, i = 1,2,…
pop_size such that qi–1    r     q1. 
Recombination of individuals is done to investigate 

the performance of new individuals that resemble the 
exiting ones. Recombination is often done by crossover 
[1]. In the crossover phase, all of the chromosomes (ex-
cept for the elite chromosome) are paired up, and with 
a crossover probability pc, they are crossed over. The 
crossover is accomplished by randomly choosing a site 
along the length of the chromosome, and exchanging the 
genes of the two chromosomes for each gene past this 
crossover site [14]. The crossover operation proceeds 
in the following manner: 

for each chromosome  – Si in the population, 
generate a random number  – r ∈ [0,1], 
if  – r    pc then select the given chromosome for 
crossover, 
compute select chromosomes randomly,  –
for each pair of coupled chromosomes, generate a  –
random integer number pos ∈ [1,…m–1], m is the 
number of bits in each chromosome, the number pos 
indicates the position of crossing point the following 
tow chromosomes are crossed over as follows: 

(30)   (b1b2…bposbpos+1bm)   and 
  (c1c2…cposcpos+1cm) 

Are replaced by a pair of their offspring 

(31)  (b1b2…bposcpos+1cm)   and 
               (c1c2…cposbpos+1bm) 

Mutation. After crossover, for each of the genes of 
the chromosomes (except for the elite chromosome), 
the gene will be mutated to any one of the codes with 
a mutation probability pm. With the crossover and mu-
tations completed, the chromosomes are once again 
evaluated for another round of selection and reproduc-
tion. Even if most of the search is being performed by 
recombination, mutation can be vital to provide the 
diversity which recombination needs. The mutation 
operation proceeds in the following manner: 

For each chromosome in the population applies: 
generate a random number  – r ∈ [0,1]
if  – r    pm mute this bit by a change of its value from 
0 to 1 or vice versa. 

Proposed algorithm 

The solution procedure of the proposed algorithm is 
summarized in the following steps: 
  1. Set k = 0. 
  2. Initialize the two populations Ps(k) and Pr(k) ran-

domly. Where E(k) is init. by zero. 
  3. If one reference point r ∈ M is reached, then go 

to 7. 
  4. Double the number of trials to obtain a reference 

point r ∈ M. If it is reached, then go to 7. 
  5. Increase the precision parameter of the algorithm, 

if it is reached go to 7. 
  6. Read the solution of the dual problem as a reference 

point. Go to 7. 
  7. Evaluate the population Pr(k) by using the objective 

function, and sort Pr(k). 
  8. Update the elitist point E(k) by the reference point 

has the best fitness. 
  9. Check feasibility, if the search point S of the popu-

lation Ps(k) are feasible, evaluate Ps(k) using the 
objective function, go to 12. 

10. Create a random point z ∈ M from a segment line 
between s and E(k) as: z = δs + (1 – δ) E(k), where 
δ ∈ [0,1] is a random number. 

11. Evaluate the point z, if the fitness of z is better than 
that of E(k), then replace E(k) and the most fit ref-
erence point r by z. Also, replace s by z with some 
probability of replacement. 
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Fig. 3. Simple genetic algorithm.

≺

≺ ≺

≺

≺



337Finding optimal of the Egyptian second nuclear reactor core patterns using genetic algorithm 

12. If the stopping rule is satisfied, then go to step 18; 
elor set k = k + 1. 

13. Select the population Ps(k) from Ps(k – 1) using a 
ranking selection method. 

14. Recombine the new population Ps(k) by using ge-
netic operators. 

15. If the number of k/n = 0, then go to 6, elor go to 
9. 

16. Recombine the new population Pr(k) by using ge-
netic operators. 

17. Select the population Pr(k) from Pr(k – 1) using a 
ranking selection method, go to 7. 

18. Stop. 

Results and discussion 

First of all, we must setup of problem we can have: 
First, we have to supply starting values that have  –
some physical meaning. It is known that fresh 
bundles in the middle lead to a large value of the 
power peak. On the other hand, the bundles on 
the boundaries of the core should be sufficiently 
burned, since this causes a loss of neutrons in the 
surrounding water. It is known that good patterns, 
therefore, have a sort of a ring structure, in which old 
bundles are put on the boundaries, and fresh bundles 
somewhere in the middle. Although we want to use a 
starting point that is based on such known good pat-
terns, so, a fractional starting pattern is constructed, 
in which it is specified how many percent of each 
bundle is initially in each node, see Fig. 4. 
Decreasing  – keff. During the cycle, the value of the 
eigenvalue keff decreases. Since the problem is very 
sensitive to the value of keff, we added the set of 
constraint.

(32)  

Relaxation of the power peaking constraint. For a  –
fixed pattern, physical equations describe the evolu-
tion of the core, and there always exists a feasible 
solution with respect to those equations. The power 
peaking restricts the number of feasible reloading 
patterns. Motivated by this observation, we initially 
relax the power peaking constraint with some per-
turbation variable ε. 

(33) 

We implemented 

(34) 

The variable ε is non-negative, it is penalized in the 
objective function with the penalty parameter ω, which 
is set to 1. So, the objective now becomes 

(35) 

we set the genetic parameters used as follows: 
Nger = 100, Npop = 100, Mutation Pr ob. = 0.05. The 

graphic results in Fig. 5 shows the results obtained 
through a genetic algorithm procedure for maximizing 
our objective functions of mean unavailability, it shows 
the best fitness function for all of them. We report the 
values of the objective functions as shown in Table 1, 
which listed 30 test cases. The restart from the best 
infeasible neighbor turned out to be helpful in almost 
half of the case. On the other hand, it shows that in a 
few cases it caused a longer search without improving 
the objective function. 

Fig. 4. First shuffling scheme in periodic 4 cycle.
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Table 1. Results for 30 different test problems 

Prob. Objective values Times

Small
  1 1.01114   74.5
  2 1.04848   73.1
  3 1.02051   80.8
  4 1.04275   94.4
  5 1.03975 135.8
  6 1.03407   92.7
  7 1.02753 150.6
  8 1.02793   79.6
  9 1.02426   68.1
10 1.02475 136.5
Medium
  1 1.03537   385.9
  2 1.03510 3348.2
  3 1.03492 3506.1
  4 1.03429 4125.9
  5 1.03380 3467.4
  6 1.03558 3855.6
  7 1.03349 3002.7
  8 1.03548 4630.7
  9 1.03402 4084.6
10 1.03329 3562.1
Large
  1 1.04756 81 468.1
  2 1.04738 61 920.2
  3 1.04724 80 259.1
  4 1.04658 39 161.3
  5 1.04646 60 335.1
  6 1.04757 53 541.8
  7 1.04675 64 471.6
  8 1.04739 38 945.7
  9 1.04665 52 791.8
10 1.04623 50 714.4
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These results certainly constitute a more informative 
set which the designer can handle for a more informed 
decision. The main features of the proposed algorithm 
could be summarized as follows: the proposed algorithm 
uses a elitist strategy to keep the best solution discov-
ered up to the current generation. Also, the use of this 
strategy guarantees that the best fitness of the popula-
tion never decreases from one generation to the next, 
the elitist strategy produces a faster convergence of the 
algorithm for optimal solution. Our proposed algorithm 
utilizes the idea of the weak duality theorem, such that 
both primal and dual solutions of the nonlinear pro-
gramming problem are generated simultaneously, to 
determine the interval in which the optimal solution is 
located at any generated number of iterations. Also, to 
verify the convergence for the optimal solution regard-
less of the computational time of the algorithm. This 
proposed algorithm deals with constraints in a direct 
way instead of using penalty functions for handling 
constraints. Our final proposed algorithm uses three 
chromosomes to represent the solution vectors; they are 
modeled as floating point numbers representation. 

Conclusion 

Genetic algorithm optimization is a powerful tool for 
optimization of a given objective function, subject to 
a number of constraints. A simplified mathematical 
model for describing reloading pattern design in the 
Egyptian second nuclear reactor has been formulated 
here as a nonlinear optimization problem. The objective 

of the optimization is to maximize the effective multi-
plication factor at EoC. One of  the strong advantage 
of nonlinear multi objective optimization using genetic 
algorithm is its capability to handle other, by nature 
continuous optimization problems. It is interesting to 
study the behavior of a one stage optimization procedure 
optimizing both the reloading pattern and a burnable 
over the fresh bundles. Also it is so important to mention 
that implicit formulations of the problem are allowed, 
since inside such an optimization procedure a Newton 
like method is used to find a feasible solution. 
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