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Introduction 

The Jacobi room model, describing the behaviour of 
free and attached radon progeny in the atmosphere 
of a room was introduced by W. Jacobi 37 years ago 
[1], was worked out and broadly applied in indoor 
measuring by J. Porstendörfer [4, 5]. It has been suc-
cessfully used up to now without substantial changes, 
so designating it as the J-P model is justified. There 
have been several attempts to invert measured data 
to determine the parameters describing the physical 
processes by approximate approaches [2, 3]. Here, an 
exact solution is given. 

The Jacobi-Porstendörfer room model 

The J-P room model for radon progeny [1, 5] is a de-
terministic simulation of the processes using compart-
ments, i.e. linear processes. For steady state situation, 
the recurrent relations between measurable concentra-
tions of free and attached radon progeny and the sup-
posed parameters k, X, qf, qa and R are simple: 

Free progeny: 
(1a)   a1f = λ1a0 / Q1f 
(1b)           a2f = λ2 (a1f + Ra1a) / Q2f

(1c)   a3f = λ3a2f / Q3f  
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Attached progeny: 
(1d)    a1a = Xa1f / Q1a 
(1e)      a2a = (Xa2f + λ2 (1 – R)a1a) / Q2a 
(1f)          a3a = (Xa3f + λ2a2a) / Q3a 

where: a0 – radon concentration, [Bq/m3]; aif and aia – 
concentrations of free (index f) and attached (index a) 
progeny in state i, [Bq/m3]; k – ventilation rate, [h–1]; X 
– attachment rate of free progeny to aerosol particles, 
[h–1]; qf and qa – deposition rates of free and attached 
progeny to surfaces in the room, [h–1]; R – fraction of 
recoiled 214Pb atoms from aerosol particles, [1]; λi – 
transformation constants, [h–1]. 

        Qif = λi + k + X + qf,   Qia = λi + k+ qa, [h–1]. 

For a set of five parameters k, X, qf, qa, R the six 
measurable concentrations of progeny aif and aia can be 
predicted from the J-P model using relations (1). 

The inversion of the Jacobi-Porstendörfer room 
model 

Using methods of linear algebra 

The task of inversion can be given more lucidly in ma-
trix form Ax = b. Labelling the measurable progeny 
concentrations 

 a1f = A,  a1a = B,  a2f = C,  a2a = D,  a3f = E,  a3a = F 

and the right sides 

            λ1(a0 – A) = a,   –λB = b,   λ2(A – C) = c, 
       λ2(B – D) = d,   λ3(C – E) = e,   λ3(D – F) = f 

the system of six equations for five parameters k, X, 
qf, qa, R is: 

(2)  

For the five unknown parameters k, X, R, qf, qa, six 
linear equations are then available, between which are 
but two linearly dependent ones – see conditions (3a), 
(3b), therefore remain only four applicable equations 
for five unknown parameters, so system (2) cannot offer 
a unique solution. If input data A, B, C, D, E, F satisfy 
conditions (3a), (3b): 

(3a)  

(3b) 

which are invariants of the J-P room model, the require-
ments of the Frobenius theorem for the system (5) are 
satisfied, the rank of the matrix and of the augmented 

matrix are after elimination of two linear equations 
equal but only h = 4. So, system (2) provides solution 
only if one of the unknowns k, qf or qa (not X or R1) is 
chosen as a known (optional, free) parameter, i.e. a 
“parametric” solution is obtained. 

The parameters R and X have in system (2) a privi-
leged position among the five unknown parameters k, 
X, qf, qa, R: they are independent of the optional pa-
rameters k, qf or qa. 

Resulting solutions of the system (2), e.g. at omission 
of the 5th and 6th equations are given in (4a), (4b), (4c), 
(4d) for various optional parameters – relations (4b) at 
optional qa, relations (4c) at optional qf, relations (4d) 
at optional k:

(4a) 

(4b) 

(4c) 

(4d) 

where: Δ = BC – AD. 
Satisfying conditions (3a), (3b), however happen 

evidently only at that time, if as input values A, B, C, D, 
E, F calculated data are used obtained from relations (1) 
for arbitrarily chosen sets of the five parameters k, X, qf, 
qa, R, which is, as a matter of fact, only checking of the 
algorithm. Unfortunately however for experimentally 
gained results A, B, C, D, E, F, the conditions (3a), (3b) 
for the existence of a unique “parametric” solution are 
never satisfied, so that the rank of the matrix and of 
the augmented matrix are not equal and the aforesaid 
(6

4) = 15 combinations of equations are possible, be-
tween which six are forbidden: one containing both the 
3rd and 4th equation (it would eliminate the parameter 
R) and five containing simultaneously the 1st and 5th 
equation (which are evidently linearly dependent and 
reduce the rank to h = 3). This leads to nine (mostly) 
different results for the set of four unknown parameters 
(and 1 free one). The range of those distinctnesses 
will be shown in Table 2, using experimental data of 
Table 1 obtained in a radon chamber of National Radia-
tion Protection Institute (NRPI), Praha. 

Providing that especially (or alone?) the value 
E “spoil“ the inversion, it is possible to determine 
substitute value, according to condition (3a). Results 
of inversion are given in Table 2 for the full number of 
combinations of equations for both sets of measure-
ments. 

It would be difficult to give rational priorities which 
combination of equations have to be used (e.g. the first 
four equations containing measurements with higher 
accuracy) and which not (e.g. the last two equations 
containing measurements with less accuracy) as argu-
ments can be given, on the contrary, also (important, 
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e.g., are the consequences of the J-P model on the RaC, 
i.e. the last two Eqs. (1c), (1f)). Table 2 shows that the 
average value and its variance can be a good approach 
to get an estimate of the involved parameters. 

Similar conclusions can be obtained in cases when 
activities of radon progeny on surfaces are measured as 
well as thoron progeny in air and on surfaces. 

Using statistical methods 

Superfluous equations (but two of them are linearly 
dependent) in the task given above offer the application 

of statistical methods but only for given sets of measured 
results. A multiple linear regression analysis without 
constraints gives acceptable results. Linear program-
ming can be used also. 

The most common approach for these tasks is the 
least-squares multiple regression method. Applied to 
the general case of system (2) with six equations and five 
unknowns only parametric solutions can be obtained 
plus an estimation of uncertainty (Table 3). 

Compared with results of algebraic inversion in 
Table 2 satisfactory agreement can be stated regard-
less of the minimal degree of freedom f = 1 and the 
existence of two linear dependencies. The regression 

Table 1. Results of five sets of measurements A, B, C, D, E, F standardized on unit radon concentration 

Set a0 k A B C D E F Eq. (3a) Eq. (3b) E/Etheor

1 884 0.35 0.498 0.335 0.100 0.423 0.0510 0.395 6.8 0.80 3.9
2 928 0.35 0.503 0.318 0.066 0.484 0.0354 0.402 7.0 0.95 3.9

Table 2. Variability of the nine solutions of algebraic inversion in the case of known ventilation rate k; Etheor is used (i.e. 
aE ≡ eA) 

Set no. 1 

Used eq. X R qf qa

2346   9.5 1.17 2.5   0.12
1346 11.2 1.45 2.3   0.18
1246   9.5 1.17 3.9   0.12
1236   9.5 1.45 3.9   0.12
1234   9.2 1.45 4.2 –0.28
3456 11.2 1.45 2.3   0.18
2456   9.5 1.17 3.9   0.12
2356   9.5 1.45 3.9   0.12
2345   9.2 1.45 4.2 –0.28
Mean   9.8 1.36   3.45     0.042
Variance 8% 10% 25% 440%

Set no. 2 

Used eq. X R qf qa

2346   9.0 0,06 1.4   0.28
1346 12.2 0.42 0.9   0.35
1246   9.0 0.06 4.1   0.28
1236   9.0 0.42 4.1   0.28
1234   8.8 0.42 4.4 –0.12
3456 12.2 0.42 0.9   0.35
2456   9.0 0.06 4.1   0.28
2356   9.0 0.42 4.1   0.28
2345   8.8 0.42 4.4 –0.12
Mean     9.67 0.30   3.15   0.21
Variance 15% 60% 50% 90%

Table 3. Results of the least-squares method in the case of unknown ventilation coefficient k for two sets of measured data 

Set no. X ± sX R ± sR (k ± sk) + (qa ± sqa) (qf  ± sqf) – (qa ± sqa)

1 9.43 ± 0.15 1.35 ± 0. 9 (0.35 ± 0.13) + (qa ± sqa) (3.96 ± 0.29) – (qa ± sqa)  
2 8.93 ± 0.17  0.31 ± 0.12 (0.48 ± 0.14) + (qa± sqa) (4.04 ± 0.31) – (qa ± sqa)

Table 3a. The correlation matrix of parameters 

Set no. 1 X R k + qa qf – qa Set no. 2 X R k + qa qf – qa

X – –0.21   0.64 –0.82  X – –0.24   0.58 –0.81
R –0.21 – –0.47   0.39  R –0.24 – –0.52   0.41
k + qa   0.64 –0.64 – –0.82 k + qa   0.58 –0.52 – –0.78
qf – qa –0.83   0.39 –0.82 – qf – qa –0.81   0.41 –0.78 –
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provides also a reasonable correlation matrix showing 
strong relations between the parameters mutually. 

Or, one can use a bit more sophisticated regression 
approach in which observations y = (a0, A, B, C, D, E, 
F, k) are only implicit functions of the parameters of 
interest (standard errors of the observations are then 
also functions of the unknown parameters and can 
be approximately obtained via delta method, or local 
linearization). Linear dependency among parameters 
has to be solved then (e.g. via reparametrization and 
estimation of certain linear combination of parameters 
not all parameters of interest). 

Alternatively, one can use Bayesian (hierarchi-
cal) modelling to get posterior estimates of the five 
parameters of interest, θ = (k, X, qf, qa, R)’ from the 
measured data and flat (or non-informative) prior on 
θ. Measured data y = (a0, A, B, C, D, E, F, k) are es-
sentially assumed to be normally and independently, but 
heteroscedastically distributed, given the parameters. 
In fact, we assume: 

independently, where: 
s – 2

a0,…, s2
F, s2

k are given by the measurement uncertain-
ties (their standard errors). These are known and 
come with the measured values (they are computed 
by metrological methods by a specialist conducting 
y measurements), 
means (in fact, we mean) of the normal observation  –
distributions are given as 

these are functions of the parameters θ (so that their 
posterior distributions can be obtained, if needed), 

for  – ma0, very flat normal prior was assumed, 
priors for the parameters were independent, as  –
follows: 

  k ~ Unif(0,1),   X ~ Unif(0,100),   qf ~ Unif(0,100), 
                  qa ~ Unif(0,100),   R ~ Unif(0,1). 

Model is fitted by Markov chain Monte Carlo 
(MCMC) method simulations (to get a sample of 
θ posterior, we use MCMC Gibbs sampling with 
100 000 burn-in period). Sample of 100 000 is then 
used with 1:10 thinning – i.e. effectively 10 000 values 
with reasonably small autocorrelation. Point estimates 
are obtained as posterior means and estimates of their 
uncertainties as posterior standard deviations. The 
following Table 4 gives the results for five sets of mea-
surements conducted in an experimental room of the 
NRPI under similar conditions (constituting basically 
random replications). 

Good agreement with physically plausible ranges is 
reached for parameters X and qf, not so good for qa but 
discrepancies are for R between statistical and algebraic 
approaches. 

Usefulness of the inversion of the J-P room model 

It can be shown that the deterministic J-P model is exactly 
invertible only if beside of free and attached radon prog-
eny concentrations in the room air also the contamination 
with radon progeny of room surfaces is measured. But the 
latter is a laborious task and only few studies in laboratory 
conditions have been realized [3]. Therefore, in practice 
only the air concentrations are available in common and 
the incomplete inversion or the shown regression ap-
proach has to be used. It is shown that also with a known 
ventilation rate (measured by an independent method) 
exact inversion cannot be reached. 

The analytical solutions (4) show nice symmetry, but 
this is of low value for practice, e.g. the results for k and 
qf will be rightfully dependent on the estimation of qa. 

At least the relations enable: 
Mainly from sets of measured results  – A, B, C, D, 
E, F in field studies to estimate a set of the five 
parameters k, X, R, qf, qa which are directly related 
to the environment of the room. 
To evaluate the preciseness of sets of measured data  –
using the conditions (3). 
To study in a more general way the power of depen- –
dence between A, B, C, D, E, F and k, X, R, qf, qa. 
To compare previously published approximate  –
solutions. 

Discussion and conclusions 

The presumptions of the J-P model are homogeneous 
distribution of radon and its progeny in the volume of 
the room as well as homogeneous contamination of the 
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Table 4. Posterior means (and standard deviations in %)/results of inversion with known k 

Parameter
Set no.

1 2 3 4 5

k 0.35 (5) 0.35 (5) 0.35 (5) 0.35 (5) 0.20 (5)
X 8.29 (9)/9.2 8.49 (10)/8.9 11.2 (6)/13 15.8 (11)/17 20.3 (5)/22
qf 2.67 (35)/4.2 2.16 (38)/4.4 2.72 (36)/2.5 3.38 (46)/5.6 4.05 (30)/3.5
qa 0.19 (58)/0.06 0.27 (15)/0.02 0.27 (39)/0.07 0.15 (60)/0.09 0.20 (34)/0.13
R 0.80 (19)/–0.28 0.20 (79)/–0.12 0.91 (9)/0.33 0.71 (29)/–0.35 0.93 (7)/0.23
DIC* 64.3 63.6 59.9 61.8 58.6
   *DIC – deviance information criterion (the smaller the better). 



437Inversion of the Jacobi-Porstendörfer room model for the radon progeny

surfaces of the room and also steady state conditions. 
This is mostly not fulfilled in field studies, better is in 
radon chambers for calibration using air mixing. The 
condition of homogeneity is broken especially by the 
short-lived 218Po and may be a correction factor can be 
introduced to fulfil the invariants (3a), (3b). 

The theoretically founded estimates for the param-
eters X, R, qf, qa are also only approximations for the 
situation in the measured spot and cannot reflect the 
complicated conditions in the whole room in actual 
and occupied rooms. Therefore, values of k, X, R, qf, 
qa obtained from measured quantities in field studies 
by inversion give averaged actual estimates. These es-
timates can be used to explain the differences in actual 
situations (smokers x non-smokers, city x countryside 
etc.) in terms of aerosol concentrations or deposition-
-potentials. Unfortunately, the certainty of these esti-
mates is limited by the optional parameter and by the 
uncertainties of the measured quantities. 
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