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Introduction 

Radon transport modeling in geological media is widely 
applicable to solve practical problems and to explore 
the regularities of radon behavior [1–4, 6, 9, 10]. Based 
upon mathematical model the assessment of transport 
parameters is performed and predictions applicable in 
different spheres are made, for example: in building to 
amend the Code of Practice; in geological exploration 
to explore uranium ore deposits; in radioecology to as-
sess radon danger for areas and buildings; in geophysics 
to study lithosphere-atmosphere bonds. 

Radon transport modeling in geological media, 
which are described as similar to real ones, is a difficult 
issue, because geological medium is heterogeneous, 
layered with significantly different geophysical and 
geochemical characteristics for each layer. In this case a 
model of radon transport in layered medium with non-
-constant coefficients is required. Model coefficients 
can be the functions of spatial and time coordinates, 
and moreover, they can change very rapidly at a border 
of two adjacent layers, i.e. they can be discontinuous at 
the borders of each layer that can be caused by greatly 
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differing parameters of soils (density, porosity, radium 
content, diffusion and emanation coefficients). 

In the explicit form there is no way to obtain ana-
lytical solution for such a model, therefore, in this case 
numerical methods are applicable. 

The present work deals with obtaining numerical 
solution for stationary and non-stationary diffusion-
-advection equation for radon transport in many-
-layered geological media. 

Problem of stationary radon transport in many-
-layered medium with discontinuous coefficients 

Let us first consider the problem of stationary radon 
transport in many-layered medium with discontinu-
ous coefficients, and then apply the modeling results 
to the case of non-stationary transport. As coefficients 
of transport equation can be discontinuous, then at the 
border of each layer the conditions of the so-called ideal 
contact (continuity) are specified, notably the equality 
of fluxes and volumetric activities of radon. 

Formulation of the problem 

Stationary radon transport in many-layered porous 
medium occurs by means of diffusion-advection mecha-
nisms [5, 6]. It is required to assign distribution of radon 
volumetric activity along the depth of geological me-
dium. According to such assignment the radon transport 
equation in medium for N-layered structure will have 
the following form (z-axis is directed downward from 
the ground surface, z ≥ 0). 

(1)  

Conditions at the external borders of the whole 
many-layered structure have the following form 

(2)  

Here An(z) is the radon activity per unit volume 
of porous medium (Bq·m–3); subscript n = 1,…,N in-
dicates the layer number; N is the quantity of layers; 
ln is the thickness of n-layer; υn is the advective radon 
transport velocity in n-layer (m·s–1); Dn is an effective 
diffusion coefficient in n-layer (m2·s–1); λ is the radon 
decay constant (s–1); An,∞ is the radon volumetric activity 
being in radioactive equilibrium with 226Ra in n-layer, 

equal to An,∞ = Kn,emAn,Raρn,s (1 – ηn), where Kn,em is the 
emanation coefficient for layer n in relative units; An,Ra 
is the specific activity of 226Ra for layer n (Bq·kg–1); ρn,s is 
the solid soil particle density for n-layer (kg·m–3); ηn 
is the soil porosity for n-layer in relative units. 

Method of solution 

Let us consider a calculation region of the problem 
(Eqs. (1), (2)). Let the thickness of geological medium 
l be a rather large value. Then, it can be expressed as 
the sum of appropriate layers: l = l1 + l2 +…+ ln–1 + ln 
+ ln+1 +…+ lN. Let us divide the layer thickness into K1 
points, then l1 = i1h1, where i1 = 0,1,2,…,K1 – 1, h1 – a 
grid pitch for layer l1. Similarly for layer l2 we have l2 = 
i2h2, where i2 = K1, K1 + 1,…, K2 – 1. Carrying on the 
process for n-layer we will obtain: ln = inhn, where in = 
Kn–1, Kn–1 + 1,…, Kn – 1. Finally, for the last layer we will 
have lN = iNhN, where iN = KN–1, KN–1 + 1,…,KN – 1, KN. 
For simplicity, we can assume that h = h1 = h2 =…= 
hn =…= hN, i.e. we will consider the uniform grid by 
spatial coordinate. Then, for the whole soil thickness the 
correlation will be performed: l = ih, where i = 0,1,2,…, 
K1 – 1, K1, K1 + 1,…,K2 – 1, K2, K2 + 1,…,Kn – 1, Kn, Kn 
+ 1,…, KN – 1, KN. The region under consideration is 
represented schematically in Fig. 1. 

For problem (Eq. (1), (2)) solution, the integro-in-
terpolated method is applied. According to this method 
there occurred a transition from a system of differential 
equations (1) to algebraic system expressed in a dif-
ference form. Such transition occurs via some integral 
relation (balance equation) expressing the conservation 
law for small volume [8]. The integrals and derivatives 
contained in balance equation should be substituted 
by approximate difference expressions. Thus, to solve 
the problem of radon transport in layered media we 
apply integro-interpolated method (balance method) 
of constructing conservative difference scheme.

For Eq. (1) in n-layer let us write down the balance 
equation for intercept zin–1/2 ≤ z ≤ zin+1/2 here zin–1/2 = 
h(in – ½), h – pitch of difference scheme [8]. 
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Fig. 1. The region under consideration for the problem 
(Eqs. (1), (2)). 
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(3)

 

Balance Eq. (3) reflects the conservation law for 
intercept zin–1/2 ≤ z ≤ zin+1/2. In order to obtain difference 
equation from balance Eq. (3), it is necessary to use the 
approximations of grid functions. We seek the function 
of solution at integer nodes (A(z), z = zin), and diffu-
sion and advection fluxes – at half-integer nodes. Let us 
imagine the first integral as diffusion fluxes difference 
[(q(z) = –Dn(z)·(dAn(z)/dz), z = zin+1/2] at half-integer 
node points and write down their approximation ac-
cording to work [8]. 

(4)

Let us further perform approximation of the second 
integral, which reflects advective radon flux, by quadra-
ture trapezium rule 

(5) 

Let us perform approximation of other equation 
terms (radon decay and formation) by functions whose 
values are sought at integer nodes of the grid 

(6)  

Let us substitute expressions (4), (5) and (6) into 
Eq. (3), and this will lead us to the system of algebraic 
equations of the following form 

(7) 

We solve system (7) for n-layer by double sweep 
method 

(8) 

Similarly, applying algorithm for n + 1 layer, we will 
obtain the solution 

(9) 

Finally, the solution of problem (1, 2) can be writ-
ten as 

(10)  

Solution of non-stationary radon transport equation 
in many-layered geological medium 

Modeling of non-stationary radon transport in geologi-
cal media is an important tool for solution of problems 
in radioecology, geophysics and atmosphere physics. 
Modeling of radon field dynamics in different geological 
media with further analysis of the obtained time series 
by method of their comparison with the results of direct 
and indirect measurements will allow to specify the 
parameters of radon transport model. 

Formulation of the problem 

There occurred non-stationary radon transport in 
geological medium via diffusion and advection pro-
cesses [5, 6]. It is required to assign distribution of 
radon volumetric activity along the depth of geological 
medium and in time. For non-stationary case the equa-
tion system (1) for N-layered soil can be written in the 
following form 
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(11)

 

At the external borders of many-layered medium 
the boundary conditions are also assigned 

(12)  

and initial condition 

(13)  

Method of solution 

Balance method is applicable for numerical analysis of 
the problem (Eqs. (11)–(13)). Let us consider a calcula-
tion region for this problem. Let us introduce uniform 
grids: ωh = {zi = ih, i = 0,1,2,…,K1,…,K2,…,KN, h = 
1/KN} with pitch h on the semi-infinite interval 0 ≤ z < ∞, 
where KN – rather a large number and ωτ = {tj = jτ, j = 
0,1,…,T, τ = T/Kn} with pitch τ of intercept 0 ≤ t ≤ T. 
They form overall uniform grid: ωhτ = ωh × ωτ ={(zi, tj), 
zi = ih, 0 < i < KN, tj = jτ, 0 < j ≤ T}, i.e. the calculation 
region represents a rectangle. Let us introduce a grid 
function of solution A(zi,tj ) = Ai

j ∈ ωhτ, which will be 
considered at integer nodes of uniform grid. Diffusion 
and advection fluxes will be considered at half-integer 
nodes. According to methodology mentioned above, 
we obtain three-diagonal system of algebraic Eqs. (14), 
after integrating by intercept zin–1/2 ≤ z ≤ zin+1/2 for n-layer 
of the soil taking into account time approximation. 

(14)  

The solution of the system (14) can be obtained by 
the double sweep method. Applying this methodology 
to other layers, we obtain the solution 

(15) 

Based on the described numerical model of radon 
transport in non-uniform geological media, the algo-
rithm was developed and program SimRaTran [7] was 
created. This program allows to model radon transport 
in porous media represented by several (up to 20) ema-
nating layers with different parameters. It also allows to 
calculate the distribution of radon volumetric activity 
and radon flux density along the depth, and radon flux 
density from the ground surface into atmosphere. 

The results of numerical modeling 

Let us consider one of the practical problems to solve 
which we can apply the numerical model (Eq. (10)) de-
scribed above. The assessment of influence of uranium-
-containing rocks deposited at a lower depth on the value 
of near-surface radon activity (at depth of measurement, 
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Fig. 2. Radon volumetric activity distribution along the depth 
of geological medium with three layers: 1 – υ = 10–6 m·s–1; 2 – υ 
= –10–6 m·s–1; 3 – uniform medium, υ = 10–6 m·s–1. 



605Solution of diffusion-advection equation of radon transport in many-layered geological media

which is usually ≤ 1 m) is of great practical concern. Let 
us perform the calculations of the function of radon 
volumetric activity distribution along the depth for the 
area whose geological structure is layered. 

Let us consider a medium consisting of three layers 
with a thickness of l1 = 4 m, l2 = 2 m and l3 = 8 m, whose 
parameters (Dn, Kn,em, ρn,s, ηn) are similar for analysis sim-
plification. In the first and third layers ARa = 30 Bq·kg–1. 
In the second layer the specific activity of radium, which 
is uranium decay product, was chosen ARa = 1000 Bq·kg–1, 
that is typical of uranium-containing rocks. 

Numerical calculations were performed at different 
values and direction of advective velocity, taken in the 

range of values obtained in work [11]. At positive val-
ues of velocity υ, the advective flux is directed towards 
the ground surface and is summed with diffusion flux, 
increasing the total radon flux into the atmosphere. 
At negative values of velocity υ, the advective flux is 
directed downward from the ground surface decreasing 
the total radon flux into the atmosphere, and, respec-
tively, the value of radon volumetric activity near the 
ground surface decreases. 

Figure 2 represents the dependence functions of 
radon volumetric activity upon the depth at positive 
and negative velocity of advection |υ→| = 10–6 m·s–1. 
The function of volumetric activity distribution along 

Fig. 3. Radon volumetric activity distribution along the depth of geological medium with four layers at the moments of time t. 
(a) Radon distributions with Fig. 3c υ = 4 × 10–6 m·s–1 at the moments of time t: 1 – t =107 s; 2 – t = 105 s; 3 – t = 2 × 105 s; 4 – t 
= 3 × 105 s. (b) Radon distributions with υ = – 4 × 10–6 m·s–1 at the moment of time t = 107 s. (c) Radon distributions with υ = 
– 4 × 10–6 m·s–1 at the same moments of time t. (d) Radon distributions with υ = 4 × 10–6 m·s–1 at the moment of time t = 107 s. 
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the depth for the uniform medium is shown in the figure 
for comparison, i.e. all three layers are represented by 
a loam with a similar radium content ARa = 30 Bq·kg–1, 
the advective velocity is assigned as 10–6 m·s–1. 

Analysis of the functions of radon volumetric activity 
distribution (Fig. 2) has shown that the influence of the 
second highly active layer, deposited even at a shal-
low depth of 4–6 m, can have no impact on the radon 
measurement results under certain circumstances. At 
the negative advection velocity, the radon volumetric 
activity at a depth of 2 m or less does not exceed the 
values observed in relatively uniform medium. 

Figure 3 represents the distribution curves of radon 
volumetric activity in layered medium (n = 4) at different 
moments of time t. The thickness of layers is: l1 = 1 m; 
l2 = 2 m; l3 = 3 m; l4 = 4 m. For analysis simplification, 
similar physico-geological parameters for each layer were 
taken, except radium content which was 90 Bq·kg–1 for the 
first layer, 4 Bq·kg–1 – for the 2nd layer, 30 Bq·kg–1 – for 
the 3rd layer and 1000 Bq·kg–1 – for the 4th layer. 

Figure 3a represents the family of calculation distri-
bution curves of radon volumetric activity in geological 
medium with the advection velocity of υ = 4 × 10–6 m·s–1. 
The figure shows that the radon volumetric activity at 
different moments of time is: 

A  – = 25–50 kBq·m–3 – at the border of the 1st and 
2nd layers; 
A  – = 25–100 kBq·m–3 – at the border of the 2nd and 
3rd layers; 
A  – = 400–450 kBq·m–3 – at the border of the 3rd and 
4th layers. 
Figure 3c represents the family of calculation distribu-

tion curves of radon volumetric activity in the medium 
with negative advection velocity υ = –4 × 10–6 m·s–1. 
Radon volumetric activity has been decreased to the 
value of: 

A  – = 10–25 kBq·m–3 – at the border of the 1st and 
2nd layers; 
A  – = 25 kBq·m–3 – at the border of the 2nd and 3rd 
layers; 
A  – = 200–250 kBq·m–3 – at the border of the 3rd and 
4th layers. 
This effect confirms the fact that total radon flux 

decreases when advection velocity is negative. 
Figures 3b and 3d represent the cases, when within a 

rather long time interval (t = 107 s) the curves calculated 
by Eq. (15) obtained from non-stationary model solu-
tion coincide with stationary regime of radon transport 
(Eq. (10)). This validates the developed numerical so-
lution (15). Thus, if the measurements are performed 
at those periods of time when the advective flux is di-
rected deep into the ground, then the erroneous results 
of potential radon risk assessment of the examined 
area can be obtained. And vice versa, at large advective 
fluxes into the atmosphere, radon volumetric activity at 
the depth of measurement (usually 1 m) can increase 
by 5 times. 

Conclusion 

A numerical model of non-stationary diffusion-advec-
tion radon transport in many-layered geological media 

has been developed and its solution has been presented. 
The peculiarity of radon transport in geological medium 
has been taken into account in the developed model. 
This peculiarity is connected with the transport equation 
coefficients which can be discontinuous at the borders 
of each layer. 

The validity of the developed numerical solution 
has been confirmed by calculations data using non-
-stationary numerical model. These data show that at 
certain moments of time the radon distribution curves 
calculated by Eq. (15) obtained from non-stationary 
model solution coincide with stationary regime of radon 
transport (Eq. (10)). 

The analysis of numerical modeling results, while 
taking into account that advection velocity can vary over 
a wide range of values and change its sign [11], indicates 
the necessity to perform integral measurements of ra-
don activity in the soil air for obtaining valid assessment 
of potential radon risk of the examined area. 
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