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Solution of diffusion-advection equation
of radon transport in many-layered
geological media

Valentina S. Yakovleva,
Roman I. Parovik

Abstract. Radon transport modeling in geological media is an important tool for solving problems and tasks of radioecol-
ogy and geophysics. Comparison of radon field time series obtained by numerical and experimental methods is one of the
most common and widely applicable ways to analyze the influence of state and variability of meteorological, electrical
and actinometric parameters of atmosphere, cosmic weather factors, variations of deflected mode of geological medium
on the level and variations of radon field. The solutions of stationary and non-stationary diffusion-advection equations
of radon transport in many-layered geological media by numerical methods, notably by integro-interpolation method
(balance method) are presented. The peculiarity of radon transport in many-layered media is taken into account in the
developed numerical model. This peculiarity is connected with the transport equation coefficients which can change
very rapidly at the border of two adjacent layers, i.e. they can be discontinuous at the borders of each layer that can be
caused by parameters of soils greatly differing in value (density, porosity, radium content, diffusion and emanation coef-
ficients). The present work is provided with an example of application of the developed numerical model for solving a
practical problem on assessment of influence of deep seated uranium-containing rock on the value of radon volumetric
activity at the depth of <1 m. The article considers non-stationary numerical model calculations showing at what time
moments the distribution curves of radon volumetric activity coincide with stationary regime of radon transport in
geological media. The validity of the developed numerical solution has been confirmed by these calculations.
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Introduction

Radon transport modeling in geological media is widely
applicable to solve practical problems and to explore
the regularities of radon behavior [1-4, 6, 9, 10]. Based
upon mathematical model the assessment of transport
parameters is performed and predictions applicable in
different spheres are made, for example: in building to
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amend the Code of Practice; in geological exploration
to explore uranium ore deposits; in radioecology to as-
sess radon danger for areas and buildings; in geophysics
to study lithosphere-atmosphere bonds.

Radon transport modeling in geological media,
which are described as similar to real ones, is a difficult
issue, because geological medium is heterogeneous,
layered with significantly different geophysical and
geochemical characteristics for each layer. In this case a
model of radon transport in layered medium with non-
-constant coefficients is required. Model coefficients
can be the functions of spatial and time coordinates,
and moreover, they can change very rapidly at a border
of two adjacent layers, i.e. they can be discontinuous at
the borders of each layer that can be caused by greatly
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differing parameters of soils (density, porosity, radium
content, diffusion and emanation coefficients).

In the explicit form there is no way to obtain ana-
lytical solution for such a model, therefore, in this case
numerical methods are applicable.

The present work deals with obtaining numerical
solution for stationary and non-stationary diffusion-
-advection equation for radon transport in many-
-layered geological media.

Problem of stationary radon transport in many-
-layered medium with discontinuous coefficients

Let us first consider the problem of stationary radon
transport in many-layered medium with discontinu-
ous coefficients, and then apply the modeling results
to the case of non-stationary transport. As coefficients
of transport equation can be discontinuous, then at the
border of each layer the conditions of the so-called ideal
contact (continuity) are specified, notably the equality
of fluxes and volumetric activities of radon.

Formulation of the problem

Stationary radon transport in many-layered porous
medium occurs by means of diffusion-advection mecha-
nisms [5, 6]. It is required to assign distribution of radon
volumetric activity along the depth of geological me-
dium. According to such assignment the radon transport
equation in medium for N-layered structure will have
the following form (z-axis is directed downward from
the ground surface, z > 0).
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Conditions at the external borders of the whole
many-layered structure have the following form

2) A =0.limA,(2) = A,.,

Here A,(z) is the radon activity per unit volume
of porous medium (Bq'm~); subscript n = 1,...,N in-
dicates the layer number; N is the quantity of layers;
[, is the thickness of n-layer; v, is the advective radon
transport velocity in n-layer (m-s™); D, is an effective
diffusion coefficient in n-layer (m*s™); A is the radon
decay constant (s™); A,,.. is the radon volumetric activity
being in radioactive equilibrium with ?Ra in n-layer,

equal to A,., = K, emAnrapns (1 = 1), where K, ., is the
emanation coefficient for layer n in relative units; A, ra
is the specific activity of **Ra for layer n (Bq-kg™); pn is
the solid soil particle density for n-layer (kg'-m=); n,
is the soil porosity for n-layer in relative units.

Method of solution

Let us consider a calculation region of the problem
(Egs. (1), (2)). Let the thickness of geological medium
[ be a rather large value. Then, it can be expressed as
the sum of appropriate layers: [ =1, + L, +...+ L, + I,
+ 41 +...+ Iy. Let us divide the layer thickness into K;
points, then /; = i1, where i; = 0,1,2,....K; — 1, h; —
grid pitch for layer /;. Similarly for layer /, we have [, =
ihy, where i, = K, K; + 1,..., K; — 1. Carrying on the
process for n-layer we will obtain: /, = i,h,, where i, =
K, 1 K,1+ 1,...,K,— 1. Finally, for the last layer we will
have IN = iNhN, where iN = KN—I; KN—I + 1,...,KN— 1, KN.
For simplicity, we can assume thath = h; = h, =...=
h, =...= hy, i.e. we will consider the uniform grid by
spatial coordinate. Then, for the whole soil thickness the
correlation will be performed: [ = ih, wherei = 0,1,2,...,
Ki-LK, K+ 1,.. . K-1,K, K+ 1,..K,-1,K, K,
+ 1,..., Ky — 1, Ky. The region under consideration is
represented schematically in Fig. 1.

For problem (Eq. (1), (2)) solution, the integro-in-
terpolated method is applied. According to this method
there occurred a transition from a system of differential
equations (1) to algebraic system expressed in a dif-
ference form. Such transition occurs via some integral
relation (balance equation) expressing the conservation
law for small volume [8]. The integrals and derivatives
contained in balance equation should be substituted
by approximate difference expressions. Thus, to solve
the problem of radon transport in layered media we
apply integro-interpolated method (balance method)
of constructing conservative difference scheme.

For Eq. (1) in n-layer let us write down the balance
equation for intercept Zi-12 <z< Ziy+1/2 here Zig-12 =
h(i, - '2), h — pitch of difference scheme [8].
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Fig. 1. The region under consideration for the problem

(Egs. (1), (2)).
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Balance Eq. (3) reflects the conservation law for
intercept z;,_1» <z <z;,+1. In order to obtain difference
equation from balance Eq. (3), it is necessary to use the
approximations of grid functions. We seek the function
of solution at integer nodes (A4(z), z = z,,), and diffu-
sion and advection fluxes — at half-integer nodes. Let us
imagine the first integral as diffusion fluxes difference
[(@(2) = -D.(2)(dA.(2)/dz), z = zi,+10] at half-integer
node points and write down their approximation ac-
cording to work [8].
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Let us further perform approximation of the second
integral, which reflects advective radon flux, by quadra-
ture trapezium rule

® [ 0B

Z,n -2

Oy 12
2 (An,i" _An,infl)

n| +1/2

(A=A

Let us perform approx1mat10n of other equation
terms (radon decay and formation) by functions whose
values are sought at integer nodes of the grid
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Let us substitute expressions (4), (5) and (6) into
Eq. (3), and this will lead us to the system of algebraic
equations of the following form
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We solve system (7) for n-layer by double sweep
method
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Similarly, applying algorithm for n + 1 layer, we will
obtain the solution
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Finally, the solution of problem (1, 2) can be writ-
ten as
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(10)

Solution of non-stationary radon transport equation
in many-layered geological medium

Modeling of non-stationary radon transport in geologi-
cal media is an important tool for solution of problems
in radioecology, geophysics and atmosphere physics.
Modeling of radon field dynamics in different geological
media with further analysis of the obtained time series
by method of their comparison with the results of direct
and indirect measurements will allow to specify the
parameters of radon transport model.

Formulation of the problem

There occurred non-stationary radon transport in
geological medium via diffusion and advection pro-
cesses [5, 6]. It is required to assign distribution of
radon volumetric activity along the depth of geological
medium and in time. For non-stationary case the equa-
tion system (1) for N-layered soil can be written in the
following form
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At the external borders of many-layered medium
the boundary conditions are also assigned

lim A (2.1) = 0.lim A, (z.) = A,

and initial condition

(13) A(2,0)=

(12)

A (2)

Method of solution

Balance method is applicable for numerical analysis of
the problem (Eqgs. (11)—(13)). Let us consider a calcula-
tion region for this problem. Let us introduce uniform
grids: W, = {Z,‘ = lh, = 0,1,2,...,Kl,...,Kz,...,KN, h =
1/Ky} with pitch / on the semi-infinite interval 0 <z < oo,
where Ky - rather a large number and o, = {t; = j1,j =
0,1,...,7, © = T/K,} with pitch t of intercept 0 <t < T.
They form overall uniform grid: o, = o, X ©,= {(zi, 1),
zi=ih,0<i<Ky,t;=jt,0<j < T}, ie. the calculation
region represents a rectangle. Let us introduce a grid
function of solution A(z,t) = A} € ., which will be
considered at integer nodes of uniform grid. Diffusion
and advection fluxes will be considered at half-integer
nodes. According to methodology mentioned above,
we obtain three-diagonal system of algebraic Eqs. (14),
after integrating by intercept z;, 1, <z < z;,+1,, for n-layer
of the soil taking into account time approximation.
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_an,iphi 1+'Ynip\1' ’Bni i+l Fnl’

'\/ _ (Dl‘ftl-gIZ DJ+1/1/2) ( rJ1+|1/+21/2 rJ1+|1/—2112
(14) ' h? 2h
+1+A1,
= A1j,i" +}\’TA1,oci"

The solution of the system (14) can be obtained by
the double sweep method. Applying this methodology
to other layers, we obtain the solution

Based on the described numerical model of radon
transport in non-uniform geological media, the algo-
rithm was developed and program SimRaTran [7] was
created. This program allows to model radon transport
in porous media represented by several (up to 20) ema-
nating layers with different parameters. It also allows to
calculate the distribution of radon volumetric activity
and radon flux density along the depth, and radon flux
density from the ground surface into atmosphere.

The results of numerical modeling

Let us consider one of the practical problems to solve
which we can apply the numerical model (Eq. (10)) de-
scribed above. The assessment of influence of uranium-
-containing rocks deposited at a lower depth on the value
of near-surface radon activity (at depth of measurement,

kKBqm™
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Fig. 2. Radon volumetric activity distribution along the depth
of geological medium with three layers: 1-v = 10°m's™;2—v
= -10"° m-s™; 3 — uniform medium, v = 10° m-s™..
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which is usually < 1 m) is of great practical concern. Let
us perform the calculations of the function of radon
volumetric activity distribution along the depth for the
area whose geological structure is layered.

Let us consider a medium consisting of three layers
with a thickness of /; =4 m,, = 2m and s = 8 m, whose
parameters (D, K, en, pus, M) are similar for analysis sim-
plification. In the first and third layers Ar, = 30 Bq-kg™.
In the second layer the specific activity of radium, which
is uranium decay product, was chosen Ar, = 1000 Bq-kg™,
that is typical of uranium-containing rocks.

Numerical calculations were performed at different
values and direction of advective velocity, taken in the

a
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range of values obtained in work [11]. At positive val-
ues of velocity v, the advective flux is directed towards
the ground surface and is summed with diffusion flux,
increasing the total radon flux into the atmosphere.
At negative values of velocity v, the advective flux is
directed downward from the ground surface decreasing
the total radon flux into the atmosphere, and, respec-
tively, the value of radon volumetric activity near the
ground surface decreases.

Figure 2 represents the dependence functions of
radon volumetric activity upon the depth at positive

and negative velocity of advection |0| = 10° m's™.
The function of volumetric activity distribution along
b
m—3
0 100 200 300 400 500 600
2 .
4
6
8 |
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Fig. 3. Radon volumetric activity distribution along the depth of geological medium with four layers at the moments of time ¢.
(a) Radon distributions with Fig. 3c v = 4 x 10° m's™ at the moments of time #: 1 -t =107s;2 - = 10°s;3 -t =2 X 10°s; 4 - ¢
=3 x 10° s. (b) Radon distributions with v = — 4 x 10 m-s™" at the moment of time r = 10" s. (c) Radon distributions with v =
-4 x 10° m-s™ at the same moments of time . (d) Radon distributions with v = 4 X 10 m-s™ at the moment of time # = 107 s.
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the depth for the uniform medium is shown in the figure
for comparison, i.e. all three layers are represented by
a loam with a similar radium content Ag, = 30 Bq-kg™,
the advective velocity is assigned as 10° m-s~.

Analysis of the functions of radon volumetric activity
distribution (Fig. 2) has shown that the influence of the
second highly active layer, deposited even at a shal-
low depth of 4-6 m, can have no impact on the radon
measurement results under certain circumstances. At
the negative advection velocity, the radon volumetric
activity at a depth of 2 m or less does not exceed the
values observed in relatively uniform medium.

Figure 3 represents the distribution curves of radon
volumetric activity in layered medium (n = 4) at different
moments of time ¢. The thickness of layers is: /;, = 1 m;
I, =2m; s = 3m; /, = 4 m. For analysis simplification,
similar physico-geological parameters for each layer were
taken, except radium content which was 90 Bq-kg™' for the
first layer, 4 Bq-kg™ - for the 2nd layer, 30 Bq-kg™' — for
the 3rd layer and 1000 Bq-kg™ - for the 4th layer.

Figure 3a represents the family of calculation distri-
bution curves of radon volumetric activity in geological
medium with the advection velocity of v =4 X 10°m-s.
The figure shows that the radon volumetric activity at
different moments of time is:

- A = 25-50 kBq'm™ - at the border of the 1st and
2nd layers;

- A = 25-100 kBq'm~ - at the border of the 2nd and
3rd layers;

- A = 400-450 kBq'm= — at the border of the 3rd and
4th layers.

Figure 3crepresents the family of calculation distribu-
tion curves of radon volumetric activity in the medium
with negative advection velocity v = -4 X 10 m-s™.
Radon volumetric activity has been decreased to the
value of:

- A = 10-25 kBq'm™ - at the border of the 1st and

2nd layers;

- A =25 kBqg'm™ - at the border of the 2nd and 3rd
layers;

- A =200-250 kBq'm= — at the border of the 3rd and
4th layers.

This effect confirms the fact that total radon flux
decreases when advection velocity is negative.

Figures 3b and 3d represent the cases, when within a
rather long time interval (f = 107 s) the curves calculated
by Eq. (15) obtained from non-stationary model solu-
tion coincide with stationary regime of radon transport
(Eq. (10)). This validates the developed numerical so-
lution (15). Thus, if the measurements are performed
at those periods of time when the advective flux is di-
rected deep into the ground, then the erroneous results
of potential radon risk assessment of the examined
area can be obtained. And vice versa, at large advective
fluxes into the atmosphere, radon volumetric activity at
the depth of measurement (usually 1 m) can increase
by 5 times.

Conclusion

A numerical model of non-stationary diffusion-advec-
tion radon transport in many-layered geological media

has been developed and its solution has been presented.
The peculiarity of radon transport in geological medium
has been taken into account in the developed model.
This peculiarity is connected with the transport equation
coefficients which can be discontinuous at the borders
of each layer.

The validity of the developed numerical solution
has been confirmed by calculations data using non-
-stationary numerical model. These data show that at
certain moments of time the radon distribution curves
calculated by Eq. (15) obtained from non-stationary
model solution coincide with stationary regime of radon
transport (Eq. (10)).

The analysis of numerical modeling results, while
taking into account that advection velocity can vary over
awide range of values and change its sign [11], indicates
the necessity to perform integral measurements of ra-
don activity in the soil air for obtaining valid assessment
of potential radon risk of the examined area.
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