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Introduction 

Devices exploiting electron spin (spintronics) require 
materials in which free electron spin can be suitably con-
trolled by external electric and/or magnetic fields [23]. 
DMS are considered as potential candidates for such 
applications. These materials combine semiconduct-
ing properties with possibility to form ferromagnetic 
layers. Suitable candidates are selected from standard 
elemental semiconductors/semiconducting compounds 
with a significant admixture of a transition metal (TM) 
like Mn or Cr providing localized spin. A number of 
such materials have been found and described in the 
literature, a typical example being Ga1–xMnxAs with x 
of the order of a few percent [8]. 

DMS should operate at or above RT in actual spin-
tronics applications. However, most of the DMS’s devel-
oped thus far exhibit transition to ferromagnetic state at 
some temperature Tc far below DMS’s with high Tc. 

The technology of DMS’s manufacture faces a com-
mon problem: incompatibility of the required relatively 
high TM content with solubility limits at thermal equi-
librium. Because of such limits the TM content may 
precipitate in the course of the growth process forming a 
second phase (e.g. MnAs in Ga1–xMnxAs [16]). To avoid 
the equilibrium problems, the growth process may be 
carried out in thermal conditions far from equilibrium. 
Thus, ferromagnetic Ga1–xMnxAs may be grown by 
molecular-beam epitaxy (MBE) at low temperatures 
(LTMBE [22]). 
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Another method to avoid the equilibrium problems 
is to introduce the TM content using some inherently 
non-equilibrium process like ion implantation. How-
ever, at the doses required for ferromagnetic interaction 
to occur, ion implantation introduces a significant lattice 
damage that may impact semiconducting and ferromag-
netic properties of the processed material. Such damage 
is usually cured by thermal annealing commonly applied 
after ion implantation. Unfortunately, typical thermal 
annealing itself is an equilibrium process that may lead 
to precipitation of unwanted phases. 

The precipitation problems can be relaxed if thermal 
annealing is carried out sufficiently fast thus inhibiting 
the progress of new phase formation. Single pulse rapid 
thermal annealing (RTA) technique has been applied 
for this purpose and annealing times as short as 30 s 
can be achieved [2]. 

Very high rates of annealing can be attained if pulse 
laser melting (PLM) is used [18]. In the technique crys-
tal surface is rapidly molten by an excimer laser pulse 
and crystallizes within a few hundred nanoseconds. 
Indeed Ga1–xMnxAs and Ga1–xMnxP with ferromag-
netic properties have been recently synthesized by that 
method [15]. 

Pulsed plasma beams may be a convenient alterna-
tive to PLM annealing. The technique offers a greater 
treatment area and a possibility of co-depositing other 
materials [13, 14]. 

Still another approach to annealing of ion-implanted 
crystals is referred to as ion beam induced epitaxial 
crystallization (IBIEC) [19]. In this technique crystal 
amorphized to some depth by ion implantation is irradi-
ated at elevated temperatures with a beam of some en-
ergetic ions. Mobile defects created by the latter beam 
interact with the crystalline bulk-amorphous surface 
layer boundary and the boundary retracts to the surface 
leaving the layer re-crystallized. The IBIEC process is 
thermally activated and proceeds with an activation en-
ergy much lower than the activation energy for thermal 
annealing [20]. It is not clear whether the IBIEC process 
should be considered as a thermal-equilibrium-one 
and whether it leads to precipitation of extra phases. 
In some cases metal silicides were reported to grow in 
IBIEC-processed implanted Si [6]. However, in a recent 
paper [4] Chen reported that ferromagnetic Ga1–xMnxAs 
formed in Mn-implanted GaAs irradiated with 350 keV 
He+ ions at 250°C exhibited the transition temperature 
of 270 K, far above the results in LTMBE material. 

This paper reports our studies performed on sili-
con as a material with best recognized technological 
properties and merits. As a matter of fact, the existing 
theory based on the Zener model and carrier-mediated 
ferromagnetism [7] predicts Si transition temperature 
as low as 140–150 K. However, experimental data are 
more optimistic. Bolduc [3] and Yoon [21] reported 
Tc > 400 K in Mn-implanted Si RTA-annealed at 800°C 
and 650°C, respectively, for 5 min. In both cases no 
hard evidence was presented that the observed ferro-
magnetism did not originate from precipitates found in 
Mn-implanted Si by other authors [1]. Results obtained 
on PLM-treated Mn-implanted Si [11] suggest substitu-
tion of Si by Mn. 

Since results obtained on IBIEC-annealed Si im-
planted with various dopants [9, 10, 17] are encouraging, 

we decided to examine the potential of that annealing 
method with respect to Mn-implanted Si. We also 
examined pulsed plasma treatment from the viewpoint 
of DMS preparation. 

Experimental 

Czochralski p-type silicon wafers of (111) orientation and 
resistivity of 150 Ωcm were cut into 10 × 10 mm samples 
and implanted at RT with 160 keV Mn+ ions to a total 
dose of 1016 ions/cm2. Next, the samples were irradiated 
at 400°C with 1.5 MeV 4He+ ions from the Warsaw van 
de Graaff accelerator to doses ranging from 1.5 × 1016 
to 7 × 1017 4He+ ions/cm2. Another set of samples was 
irradiated with two about 1 µs long hydrogen plasma 
pulses of energy density 2.5–4 J/cm2. The pulses were 
generated by the IBIS device [13]. The samples were then 
analyzed by the RBS technique at the Rossendorf Ion 
Beam Centre using 1.7 MeV 4He+ ion beam. Random 
and channeled measurements were performed. Some 
of the obtained experimental RBS spectra were fitted 
using the SIMNRA code for RBS simulations in order 
to simulate the Mn depth profiles. 

Results and discussion 

Random and channeled RBS spectra of some virgin 
Mn-implanted-silicon/4He+-irradiated/hydrogen-
-plasma-treated samples are presented in Fig. 1. The 
plot shows that Mn implantation produces about 
90 nm thick amorphous zone. Irradiation to the lowest 
dose of 1.5 × 1016 He+ ions/cm2 leads to a complete 
recovery of the crystallographic order within the zone. 
However, the resulting surface layer, although aligned 
with the substrate structure, is far from being perfect, 
as deduced from the high value of the channeled RBS 
spectrum below the surface peak. 

RBS spectrum for the plasma-pulse-treated sample 
is very similar to the virgin crystal spectrum. That means 
that plasma pulses almost completely recovered the 
implantation-damaged region. 

Manganese evolution can be deduced from manganese 
parts of RBS spectra taken for implanted/4He+-irradiated/
pulse-treated samples shown in Figs. 2a and 2b. 

Fig. 1. Random and channeled RBS spectra corresponding 
to a virgin silicon sample and channeled spectra of Mn-
-implanted/implanted and 4He+-irradiated/hydrogen-plasma-
-pulse-treated samples.
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In Fig. 2a we can see that a significant shift of the 
manganese content towards the surface occurred after 
4He+ irradiation. Higher dose irradiations (not shown) 
led to reduction of the Mn peak, i.e. produced an 
apparent escape of Mn from the sample. Thus, 4He+ 
irradiation must be administered very carefully to avoid 
reduction of the manganese content. 

Figure 2b shows the Mn content evolution after 
plasma pulse treatment. As before, we can see trans-
port of manganese towards the surface. However, Mn 
concentration has also been reduced in comparison 
to the 4He+ irradiation case. Plasma pulse energy ap-
plied was higher than the surface melting threshold 
estimated as 2.2–2.5 J/cm2 (depending on the pulse 
length) and it is likely that some appropriate reduc-
tion of the energy will lead to a more favorable Mn 
content evolution. 

Aligned spectra of 4He+-irradiated and pulse-treated 
samples coincide with the random ones. This shows that 
Mn crystallizes in interstitial positions, in agreement 
with theoretical considerations [5]. At the present stage 
of our research we cannot exclude the possibility that 
Mn forms other crystallographic structures. What is 
only known is that Mn does not occupy substitutional 
positions in otherwise perfect crystal. 

SIMNRA simulations of the 4He+-irradiated Mn 
profiles are shown in Fig. 3. A significant Mn shift 
towards the surface may be seen. However, no out-
diffusion is seen, as deduced from simulation of the 
cumulated Mn content within the sample. Although 
the surface layer created by irradiation is very thin, the 
Mn content in this layer is quite high and amounts to 

Fig. 2. Random and channeled RBS spectra illustrating man-
ganese evolution after (a) 4He+-irradiation and (b) hydrogen-
-pulse-plasma treatment. 

Fig. 3. Results of SIMNRA simulations of Mn profiles before and after 4He+-irradiation. Left: RBS spectra. Right: Mn depth 
profiles (please note the depth scale direction). 
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14 at.%. In plasma-pulse-treated samples the surface 
concentration may be estimated as 7%. 

The effects of 4He+-irradiation at elevated tempera-
tures may be considered as a manifestation of IBIEC. 
The attained crystal recovery is remarkable and allows 
us to conclude that with more careful adjustment of 
alpha particle energy/dose and irradiation tempera-
ture much better results are conceivable. However, it 
is also obvious that the location of manganese is not 
substitutional and the IBIEC process satisfied the same 
thermodynamical constraints which favor interstitial 
locations [5]. 

The effects of plasma pulse treatment are similar 
to that of 4He+-irradiation but the surface layer quality 
seems to be better. We see no diffusion of manganese 
within the silicon molten phase. Again, this process 
should be studied in more detail because potentially 
the plasma treatment gives a better chance to avoid 
problems of second phase precipitation. 

Work on determination of the manganese structure 
and the magnetic properties is in progress. 
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