Targetry and radiochemistry for no-carrier-added production of ^{117,118m,119,120m,122}Sb

Mahdi Sadeghi, Mohammad R. Aboudzadeh Rovais, Milad Enferadi, Parvin Sarabadani

Abstract. Targetry of ^{nat}Sn-target on Cu substrate was investigated for the production of ^{117,118m,119,120m,122}Sb. The electrodeposition experiments were carried out using potassium stannate trihydrate and potassium hydroxide. The optimum conditions of the electrodeposition of tin were as follows: 40 g/L ^{nat}Sn, temperature 75°C and current density (dc) used throughout of 50 mA/cm². The deposited target was irradiated at 160 μ A current and 16 MeV proton beam (10 min). Separation of no-carrier-added (nca) ^{117,118m,119,120m,122}Sb from the irradiated ^{nat}Sn target hydrochloric solution was investigated using silica-gel column chromatography.

Key words: electrodeposition • targetry • silica-gel column • ^{nat}Sn • ^{117,118m,119,120m,122}Sb

M. Sadeghi[∞], M. R. Aboudzadeh Rovais, P. Sarabadani Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran, Tel.: +98 261 443 6395, Fax: +98 261 446 4055, E-mail: msadeghi@nrcam.org

M. Enferadi Department of Nuclear Engineering, Research and Science Branch, Islamic Azad University, Tehran, Iran

Received: 15 July 2010 Accepted: 8 November 2010

Introduction

Antimony is a widely distributed toxic trace element in soils, and it is likely to be a pollutant in industrial environments [15, 16]. The mobility of antimony in agricultural soils was studied with the help of ¹²⁴Sb radiotracer [21]. The radionuclide ¹²²Sb was used for the studies of environmental contamination or food crops [4, 10, 11]. Only very few radionuclides exist that decay exclusively by electron capture (EC) mode without accompanying radiation, ¹¹⁹Sb is one of them [2, 7, 8, 23]. Auger emitter ¹¹⁹Sb ($T_{1/2} = 38.9$ h, $I_{EC} = 100\%$) are a potent nuclide for targeted radionuclide therapy based on theoretical dosimetry calculations at a subcellular scale [28–31]. ¹¹⁷Sb ($T_{1/2}$ = 2.8 h) decays mainly by EC (only 1.7% β^+) with the emission of nearly single X-ray of 158.56 keV suitable for imaging. In fact, the energies and intensities of the emitted photons in the ¹¹⁷Sb decay are very similar to the photons emitted by the widely used single photon emission computed tomography (SPECT) isotope ¹²³I [22, 28, 29].

Cross section for the production of nca (no-carrieradded) ^{117,118m,120m,122,124}Sb radionuclides was measured by Khandaker *et al.* [11], Hermanne *et al.* [4], Johnson *et al.* [6], Kormali *et al.* [14], and Dmitriev *et al.* [3]. Cyclotron and reactor produced radioantimony were separated from the target matrix by liquid-liquid extraction (LLX) [1], ion-exchange chromatography [19, 20, 28, 29] and silica-gel column chromatography [9]. The aim of this work was to targetry of ^{nat}Sn by electrodeposition via alkaline solution on a pure copper substrate that has sufficient stability at high-power beam bombardment, and separation of antimony radionuclides from natural tin using silica-gel column chromatography. Also several methods of targetry (alkaline and acid solution and sedimentation) have been studied.

Experimental

Target preparation

Tin targets are prepared by DC constant current electrolysis (CCE) of the metal from alkaline plating solutions. ^{nat}Sn (40 g/L, Merck 99.9%) was added in a 1000 ml beaker, followed by the addition of KOH (20 g/L), K₂Sn(OH)₆ (115 g/L, Aldrich 99.9%) and deionized water (250 mL). After mixing and stirring at a temperature of 65–90°C, the homogenized solution was filtered through a fine glass filter (0.45 µm) to remove any residual particles if necessary to be ready for electroplating. Non-reactive plating vessels are hollow perspex cylinders (diameter 6 cm, height 20 cm) fitted with a tin anode foil. Four symmetrical windows (22.36 or 11.69 cm²) on the vertical side wall allow up to four copper targets backing positioning. Each slot is sealed by an O-ring fitted-window. The slot geometrical shape determines the actual target electrodeposition area. Windows liquid-tight sealing is realized by stainless steel mechanical pestles mounted on a polyvinyl chloride (PVC) ring surrounding plating vessel and by pressing the copper backing against O-ring seal. An external PVC ring is fitted with four supporting pins to hold a motor-stirrer combination in position. The stirrer is a hollow perforated polyoxymethylene (POM) cylinder mounted on the axis of dc. The stirrer rotation speed is set at 1000 rpm; during the process, its rotating direction is reversed after 8 s improving deposit homogeneity [25, 27]. The electroplating process was carried out with a bath temperature of approximately 70-90°C with a plating current density of 30-80 mA/cm² for 3-5 h. Factors such as the operating temperature, solution constituent concentration and operating current density all affect the efficiency and plating rate of the system and must be property balanced and controlled. Three reactions are possible at tin anodes in alkaline solutions:

(1) $\operatorname{Sn} + 6\operatorname{OH}^{-} \to + 4e^{-}$

(2)
$$\operatorname{Sn} + 4\operatorname{OH}^{-} \to + 2\operatorname{e}$$

$$(3) \qquad 4OH^- \rightarrow O_2 + 2H_2O + 4e$$

Equation (1) represents the overall process occurring at the anodes when the foil is intact and the tin is dissolving as stannate ion, with tin in the Sn^{+4} . Equation (2) is the process occurring if there is no foil and the tin is dissolving as stannite ion, with tin in the Sn^{+2} state. The addition of H_2O_2 to the electrolyte oxidizes the Sn^{+2} to Sn^{+4} , returning it to a usable condition. Equation (3) shows the decomposition of hydroxyl ion with the formation of oxygen. While this is a normal reaction at the anode, it should not be permitted to become the dominant reaction, as occurs when the anode current density is too high [12]. According to SRIM code [32, 33] the thickness has to be 168 μ m for 90° geometry. To minimize the thickness of the ^{nat}Sn layer and to increase heat transfer, 6° geometry is preferred, in which case a 16.56 μ m tin layer is recommended.

In method of sedimentation, ethyl cellulose was added to ^{nat}Sn. Then, suspensions of this mixed in acetone were obtained by mixing and stirring. To prepare the target a particular home-made system was constructed. It consists of two plates ($19 \times 10 \times 3 \text{ cm}^3$) made of teflon. To achieve the desired thickness ($16.56 \mu m$), $169 \text{ mg}^{\text{nat}}$ Sn is required. But in order to avoid proton beam incidence with Cu backing and 65 Zn production, natSn deposit should be 30 μm . The ^{nat}Sn suspension solution was stirred for 5–10 min and loaded into a cylinder of the upper disk immediately. The window was covered by a plate made of teflon that includes a small hole. The solution evaporated slowly through the hole at room temperature after about 12–24 h [26].

For other electroplating processes, three types of electroplating baths were tested. At first, the plating was done with an acidic bath containing SnSO₄ dissolved in 4% H₂SO₄. This bath was chosen due to the advantage that the plating can be carried out at room temperature (RT). The second type of plating solution tested, was made by dissolving Sn metal powder in hot 2-3 M KOH containing H_2O_2 (50–100 mL) to ensure the formation of Sn(IV) [29]. The obtained solution was diluted to 0.20-0.5 M KOH with distilled water and the electroplating was then carried out with a bath temperature of 60-100°C on a silver coated copper substrate. The third type of plating was done with an acidic bath containing ^{nat}Sn, 800 mg of Sn metal powder in 50 mL conc. HCl with H₂O₂ added. Then, 15 mL of 10 M KOH was added and when the freshly formed precipitate had disappeared, the solution was diluted to 400 ml with distilled water. The resulting solution was heated to approximately 75°C and transferred to the electroplating cell. The electroplating process was carried out for 8 h at 70-80°C with a current density of 3–5 mA/cm² [28, 31].

Irradiation

The coated natural tin was introduced into a target holder and bombarded with 16 MeV protons at a current of 160 μ A for 10 min. The AMIRS (Agricultural, Medical and Industrial Research School, Iran) employs a Cyclone-30 (IBA, Belgium). To protect the target material from reaching excessively high temperatures during the irradiation a jet of cooling water flows across the back of copper substrate in direct contact with it, so heat removes efficiently from the backing. In order to improve the thermal conductivity, the copper substrate includes some grooves in the back. No direct cooling is used over the front of the deposited target.

Radiochemical separation

After irradiation, the target was dissolved in concentrated HCl containing H₂O₂. A column size of \emptyset 1.0 × 10 cm was used, packed with silica-gel (100–200 mesh, \ge 99%, Aldrich). According to methods of Khalid *et al.*

Fig. 1. Excitation function of the $n^{at}Sn(p,x)$ reaction by TALYS-1.2 code.

[9] and Thisgaard *et al.* [28, 31], it is possible to separate Sb from the bulk Sn target material by pretreating the silica-gel with 6 M HCl for 24 h prior to the separation. The pretreated silica-gel was washed and packed on the column and conditioned with 1 M HCl. The dissolved target solution (12 M HCl) diluted to 1 M HCl with deionized water and eluted through the column, followed by washing the column with 30 mL of 1 M HCl to remove any traces of Sn. Subsequently, the Sb-fraction eluted with 20 mL 6 M HCl.

Radionuclidic purity control

Identification and assay of gamma-ray emitting radionuclides was carried out using γ -ray spectroscopy with a high purity germanium (HPGe) detector (Canberra™ model GC1020-7500SL). For the natSn irradiations, the activities of the produced ¹¹⁷Sb ($T_{1/2} = 2.80$ h), ^{118m}Sb $(T_{1/2} = 5.00 \text{ h})$, ^{120m}Sb $(T_{1/2} = 5.76 \text{ d})$ and ¹²²Sb $(T_{1/2} =$ 2.7238 d) were measured. These isotopes were chosen instead of the ¹¹⁹Sb due to the very low energy of the emitted γ -photon of 23.87 keV from the ¹¹⁹Sb decay. Because of the high background from the other Sb isotopes produced simultaneously in the target it would be very difficult to get a correct measurement of the ¹¹⁹Sb activity. Even if it had been possible to get an accurate measurement of the ¹¹⁹Sb activity, it would not have been possible to scale this activity with increasing ¹¹⁹Sn enrichment. This is because when using ^{nat}Sn as target material, ¹¹⁹Sb will be produced from both the (p,n) and (p,2n) reactions on ¹¹⁹Sn and ¹²⁰Sn, respectively [28].

Chemical purity control

The presence of Cu^{2+} originating from the electroplated ^{nat}Sn on Cu backing was checked by polarography and colorimetric assays. A series of dilute copper standard solutions were checked up on our polarography apparatus limit of detection. For colorimetric assay, our limit of detection was 10 ppm. Standard copper concentrations were complexed by dithizone forming a pinkish complex [18].

Results and discussion

Excitation function of the proton-induced reaction on tin-natural was measured by TALYS-1.2 code [13] (Fig. 1). In order to optimize the ^{nat}Sn electrodeposition and sedimentation, the experimental conditions were investigated as follows.

Influence of current density

The electrodeposition experiments were carried out with different current density for several methods of electrodeposition (Tables 1, 2, 3 and 4). Tin ions in alkaline electrolytes have the valence of +4, whereas those in the acid electrolytes have the valence of +2. Consequently, the alkaline systems require the passage of twice as much current to deposit one gram-molecule of tin at the cathode [5, 12, 17, 24]. For electrodeposition, using potassium stannate trihydrate and potassium

Table 1. Influence of current density in alkaline solution (potassium stannate trihydrate and potassium hydroxide), the amounts used being 40 g/L tin, 20 g/L KOH and 115 g/L K_2 Sn(OH)₆ (temperature 75°C and plating time: 4 h)

J (mA/cm ²)	Adhesion	Comments		
10	Tolerable	Low current efficiency		
20	Tolerable	Low current efficiency		
30 Excellent		Reflective, smooth, low current efficiency		
50	Excellent Reflective, s			
70	Excellent Reflective, smooth, high current of			
100	Tolerable	High current efficiency		
200	Unfavorable	Unstable, rough, porous		

Table 2. Influence of current density in alkaline solution with 2.5 M KOH containing 80 mL of H_2O_2 , on a silver coated copper substrate (temperature 75°C and plating time: 7 h)

J (mA/cm ²)	Current efficiency (%)	Adhesion
4	22.1	Unfavorable
6	28	Unfavorable
8	18.6	Unfavorable
10	9.8	Unfavorable
45	3.2	Unfavorable
60	14	Unfavorable
85	47	Unfavorable
170	-	-

Table 3. Influence of current density in acidic solution with 70 g/L SnSO₄ dissolved in 4% H₂SO₄, on a silver coated copper substrate (temperature 30°C and plating time: 3 h)

J (mA/cm ²)	Adhesion	Comments
5	Unfavorable	Low current efficiency
10	Unfavorable	Low current efficiency
30	Tolerable	Low current efficiency
50	Tolerable	Low current efficiency
100	Unfavorable	Unstable, rough, porous
200	Unfavorable	Unstable, rough, porous

Table 4. Influence of current density in acidic solution with 15 ml of 10 M KOH and H_2O_2 (40 mL) dissolved in hot concentrated HCl (temperature 75°C and plating time: 8 h)

J (mA/cm ²)	Adhesion	Comments
1	_	_
3	Tolerable	Low current efficiency
5	Tolerable	Low current efficiency
7	Tolerable	Low current efficiency
10	Unfavorable	Unstable, rough, porous
50	Unfavorable	Unstable, rough, porous
100	Unfavorable	Unstable, rough, porous
200	Unfavorable	Unstable, rough, porous

hydroxide, the current efficiency was determined at different current densities using DC current at a temperature of 75°C. An optimum current density of about 50 mA/cm^2 should be applied.

Influence of ethyl cellulose amount

Quantity of ethyl cellulose is an important factor for adhering and coating among physical properties of the samples. So, the quantity of ethyl cellulose should be at the optimum. The adhesion of samples was determined at different quantity of ethyl cellulose with respect to the ^{nat}Sn; these data are shown in Table 5 for an acetone amount of 6 mL. The optimum amount of ethyl cellulose is about 10% of ^{nat}Sn. Less amount of ethyl cellulose appears in adhesiveness of deposited ^{nat}Sn. On the other hand, more amount of it reduces the target thermal conductivity and causes tin to be porous.

Target quality control

To estimate the quality of the electroplated and sedimented tin targets some criteria had to be taken into account such as homogeneity, morphology and a thermal shock test. The homogeneity of the tin layer is important as it may seriously affect the production rate of antimony radionuclides. This was determined by measuring the thickness of several parts of the layer by a micrometer and calculation of the standard deviation of the data.

All electrodeposited tin target layers were examined for morphology by a scanning electron microscopy (SEM) technique (Figs. 2–6). The thermal shock tests involved the heating of the target up to 400°C for 1 h followed by submersion of the hot target in cold (15°C) water. SEM photomicrograph showed that the granulometry of electroplated targets with acidic baths and KOH + H₂O₂ were not as desired (Figs. 3, 4 and 5).

Fig. 2. SEM of a ^{nat}Sn deposit on a copper substrate (40 g/L tin, temperature 75°C, 20 g/L KOH, 115 g/L K₂Sn(OH)₆, J = 50 mA/cm² and plating time: 4 h).

Table 5. Influ	uence of EC	with 6 mL	of acetone	for 300 mg	of natSn
----------------	-------------	-----------	------------	------------	----------

W(EC) (mg)	$W(ext{EC})/W(ext{nat}Sn)$ (%)	t ^a (µm)	Adhesion	Comments
120	40	47.90	Unfavorable	Porous, unstable
90	30	44.48	Unfavorable	Porous, unstable
60	20	41.06	Tolerable	Porous
45	15	39.34	Excellent	Reflective, smooth
30	10	37.63	Excellent	Reflective, smooth

t – measured mean thickness of the deposit in micrometers.

^a The prepared suspensions were manually introduced into the home-made system, so some suspensions were remained in the baker inevitably. Therefore, in some cases, despite of more amounts of ^{nat}Sn/EC, the obtained thickness was less than the coating condition with fewer amounts of ^{nat}Sn/EC.

Fig. 3. SEM of a ^{nat}Sn deposit on a silver coated copper substrate (a and b) (2.5 M KOH containing 80 mL H₂O₂, temperature 75°C, J = 5 mA/cm² and plating time: 7 h).

Fig. 4. SEM of a ^{nat}Sn deposit on a silver coated copper substrate: (a and b) (70 g/L SnSO₄ dissolved in 4% H₂SO₄, temperature 30° C, J = 100 mA/cm² and plating time: 3 h).

Fig. 5. SEM of a ^{nat}Sn deposit on a silver coated copper substrate (a and b) (15 ml 10 M KOH and (40 mL H_2O_2) dissolved in hot concentrated HCl, temperature 75°C, J = 5 mA/cm² and plating time: 8 h).

Fig. 6. SEM of a ^{nat}Sn deposit on a Cu backing (a and b) (300 mg ^{nat}Sn, 30 mg EC, and 6 mL of acetone suspensions).

Also the sedimented tin targets in the thermal shock tests (300°C) were unstable (peeling off). Hence, electroplated targets with potassium stannate trihydrate and potassium hydroxide were chosen and the SEM photomicrograph showed suitable granulometry (Fig. 2).

After obtaining the optimum conditions (current density of 50 mA/cm² and temperature 75°C), a series of electrodeposition procedures were conducted on four target backings. Using different concentration of tin in the bath, the experiments were carried out for preparation of four targets (surface area of 11.69 cm²) with different thickness. At the end of the plating, the tin surface was shiny.

Sb/Sn radiochemical separations

After dissolution of irradiated tin in conc. HCl, the solution was evaporated three times by the addition of 12 M HCl. The dissolved target solution (12 M HCl) was diluted to 1 M HCl with deionized water and finally eluted from the column. The column was washed with 30 mL of 1 M HCl to remove the tin, while antimony chloride remained on silica gel. Then, the antimony chloride was eluted with 20 mL of 6 M HCl (eluent temperature: 70–80°C). Production yields for ¹²²Sb, ^{120m}Sb, ^{118m}Sb and ¹¹⁷Sb were 2.19 MBq/µA·h, 807 kBq/µA·h, 46.1 MBq/µA·h and 430 MBq/µA·h, respectively. As shown in Fig. 7, some impurities such

Fig. 7. Non-destructive γ -ray spectrum of proton irradiated ^{nat}Sn taken 24 h after end of bombardment (EOB).

Fig. 8. HPGe spectrum of radiochemically separated antimony radionuclides taken 7 days after EOB. No other peaks have been detected in the γ -spectrum.

as ¹¹³Sn ($T_{1/2} = 115.09$ d, 255.03 keV) appeared in the dissolved sample. After separation (Fig. 8), the obtained antimony purity was better than 99%.

Conclusions

The target was prepared by electroplated tin-natural on a copper substrate using alkali solution (potassium stannate trihydrate and potassium hydroxide). The optimum conditions of the electrodeposition of tin were as follows: 40 g/L ^{nat}Sn, temperature 75°C and dc of 50 mA/cm². Also several methods of targetry (alkaline and acid solution and sedimentation) have been studied. The target was irradiated up to 160 μ A current with 16 MeV protons beam and no degradation was observed. Antimony radionuclides were separated from the target with 80 ± 5% yield by using silica-gel column chromatography. Production yields of ¹²²Sb, ^{120m}Sb, ^{118m}Sb and ¹¹⁷Sb were 0.059, 0.021, 1.24 and 11.62 mCi/ μ A h, respectively.

Acknowledgment. The present authors are thankful to Faramarz Adeli, Zahra Alipoor, Dr Amir Reza Jalilian (Radiopharmaceutical Research & Development Laboratory (RRDL), Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran), Prof. Mikael Jensen and Dr Helge Thisgaard (The Hevesy Laboratory, Radiation Research Department, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde, Denmark).

References

- 1. Baluev AV, Mityakhina VS, Krasnikov LV, Galkin BY, Besnosyuk VI (2003) Recovery of antimony-125 from tin-124 irradiated by neutrons. Czech J Phys 53:A417–A423
- Behr TM, Behe M, Lohr M *et al.* (2000) Therapeutic advantages of Auger electron- over beta-emitting radiometals or radioiodine when conjugated to internalizing antibodies. Eur J Nucl Med 27:753–765
- 3. Dmitriev PP, Konstantinov IO (1993) ¹¹⁷Sb, ^{118m}Sb, ^{120m}Sb, ¹²²Sb and ¹²⁴Sb yields in the reactions Sn(p,*x*n). Atomic Energy 75:354–358
- Hermanne A, Tárkányi F, Ditrói F *et al.* (2006) Experimental study of the excitation functions of proton induced reactions on ^{nat}Sn up to 65 MeV. Nucl Instrum Methods B 247:180–191
- 5. Hirsch S (1993) Tin-lead, lead, and tin plating. Metal finishing guidebook and dictionary. 91, p 269
- Johnson CH, Bair JK, Jones CM, Penny SK, Smith SW (1977) P-wave size resonances observed by (p,n) reaction for 2.6 MeV to 7 MeV protons incident on isotopes of Sn. Phys Rev C 15:196–216
- 7. Kassis AI (2003) Cancer therapy with Auger electrons: are we almost there? J Nucl Med 44:1479–1481
- Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46:S4–S12
- 9. Khalid M, Mushtaq A, Iqbal MZ (1999) Separation of Sb-125 from neutron irradiated tin using silica gel. Radiochim Acta 84:213–214
- Khalid N, Ahmad S, Toheed A, Ahmed J (2000) Potential of rice husks for antimony removal. Appl Radiat Isot 52:31–38

- Khandaker MU, Kim K, Kim KS *et al.* (2009) Excitation functions of the proton-induced nuclear reactions on ^{nat}Sn up to 40 MeV. Nucl Instrum Methods B 267:23–31
- 12. Killmeyer J (1994) Tin plating. ASM Handbook. Surface engineering. American Society for Metals, Vol. 5, p 239
- Koning AJ, Hilaire S, Duijvestijn M (2009) TALYS-1.2 A nuclear reaction program. User manual. Nuclear Research and Consultancy Group (NRCG) 1755, Netherlands, www.talys.edu/
- Kormali SM, Swindle DL, Schweikert EA (1976) Charged particle activation of medium elements. II. Proton excitation functions. J Radioanal Chem 31:437–450
- Lintschinger J, Michalke B, Schulte-Hostede S, Schramel P (1998) Studies on speciation of antimony in soil contaminated by industrial activity. Int J Environ Anal Chem 72:11–25
- Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165
- 17. Lowenheim FA (1974) Modern electroplating, 3rd ed. Wiley-Interscience, New York
- Marczenko Z (1976) Spectrophotometric determination of elements, 4th ed. Wiley, New York, p 601
- Maruyama Y, Yamaashi Y (1988) A simple method for the separation of ¹²⁵Sb from neutron-irradiated tin. Int J Appl Radiat Isot 39:1079–1080
- Mirza MY, Sani AR, Hussain J, Jawaid M (1974) Separation of Sb-125 from neutron-irradiated tin. Radiochim Acta 21:155–156
- 21. Nakamaru Y, Tagami K, Uchida S (2006) Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Environ Pollut 141:321–326
- Neves M, Kling A, Oliveira A (2005) Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem 266:377–384

- O'Donnell RT (2006) Nuclear localizing sequences: an innovative way to improve targeted radiotherapy. J Nucl Med 47:738–739
- 24. Price JW (1983) Tin and tin-alloy plating. Electrochemical publication, Ayr, Scotland
- Sadeghi M, Amiri M, Rowshanfarzad P, Gholamzadeh Z, Ensaf M (2008) Thick zinc electrodepositionon copper substrate for cyclotron production of ⁶⁴Cu. Nukleonika 53;4:155–160
- Sadeghi M, Enferadi M, Nadi H (2010) Study of the cyclotron production of ¹⁷²Lu: an excellent radiotracer. J Radioanal Nucl Chem 286:259–263
- Sadeghi M, Kakavand T, Rajabifar S, Mokhtari L, Rahimi-Nezhad A (2009) Cyclotron production of ⁶⁸Ga via proton-induced reaction on ⁶⁸Zn target. Nukleonika 54;1:25–28
- Thisgaard H (2008) Accelerator-based production of Auger-electron-emitting isotopes for radionuclide therapy. PhD Thesis, Denmark, Risø-PhD-42(EN)
- Thisgaard H, Jensen M (2008) ¹¹⁹Sb a potent Auger emitter for targeted radionuclide therapy. Med Phys 35:3839–3846
- Thisgaard H, Jensen M (2008) Production of the Auger emitter ¹¹⁹Sb for targeted radionuclide therapy using a small PET-cyclotron. Appl Radiat Isot 67:34–38
- Thisgaard H, Jensen M, Elema DR (2011) Medium to large scale radioisotope production for targeted radiotherapy using a small PET cyclotron. Appl Radiat Isot 69:1–7
- Ziegler JF (2004) SRIM-2003. Nucl Instrum Methods B 219/220:1027–1036
- Ziegler JF, Biersack JP, Littmark U (2003) SRIM-2003 code. The stopping and range of ions in solids. Pergamon, New York, http://www.srim.org/