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Introduction 

The NAA method is one of the most sensitive methods 
of isotopic analysis of samples. NAA relies on the (n, γ) 
activation of target nuclei by neutrons. In delayed mea-
surement, the nuclear reaction produces radioactive 
nuclides in samples and the amount of radioactive atoms 
of each element are measured subsequently by gamma 
detectors [11]. Identification of the elements is based on 
the fact that most elements has characteristic gamma 
energies. Intensity of the emitted radiation depends 
on the number of atoms in the target sample so that 
quantitative detection can be performed by measure-
ment of sample activity. With known parameters such 
as neutron flux, gamma-energy spectrum, cross sections 
and their energy dependence, irradiation time, half-lives 
and detector efficiency, the amount of elements can be 
calculated from the measured radioactivity. In practice, 
a reference (standard sample) is irradiated together 
with the original sample in the same irradiation condi-
tions. The standard sample usually consists of a mixture 
of elements with known concentration of each element 
[1]. Two points in this method should be considered; 
a) qualitative and quantitative analyses are done sepa-
rately and may require at least two irradiations for full 
determination and, b) gamma lines identification is very 
difficult in the presence of background and spectrum 
overlap, so that the probability of mal-determination 
of qualitative analysis may increase. To avoid these 
problems, a modification was applied in NAA using 
artificial neural network (ANN). 

Neural networks are tools for non-linear data model-
ing. They can be used to model complex relationships 
between inputs and outputs or to find patterns in data 
[5]. One advantage of the neural network approach 
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is that most of the intense computation takes place dur-
ing the training process before analysis [6]. 

ANN is used in a wide variety of processing appli-
cations where a real time, data analysis and informa-
tion extraction are required. Once the ANN had been 
already trained for a particular task, operation was 
relatively fast and unknown samples could be rapidly 
identified. In this work library the least squares (LLS) 
method accomplished with a neuro-fuzzy model is used 
for this purpose. It is based on separation of the mea-
sured gamma spectrum, on components characteristic of 
spectra of isotopes-subject of research. This component 
requires availability of the library of reference spectra. 
In this work, this library is produced by a combination 
of some experimental respect, Monte Carlo (MC) simu-
lation and the neuro-fuzzy model. The LLS approach 
for NAA has a number of advantages [3] such as: 1) It 
is the most fundamental approach; 2) It is capable of 
providing accurate results since the entire spectrum 
can be used; 3) It automatically provides an estimation 
of the standard deviation of each calculated elemental 
amount in the presence of all other components; 4) Peak 
interferences are automatically accounted for. 

The only requirement is that elemental libraries 
must be available for all elemental samples. In this 
study, it is necessary to have a library for all elements. 
This library was produced by neural network by con-
sidering a combination of some experimental data and 
the MC simulation. 

Material and methods 

In NAA, the quantity of an element msmp is given by the 
following equation: 

(1)  msmp = mstd × pcsmp /pcstd  

where: mstd, msmp are the standard and sample masses, 
respectively; pcsmp, pcstd are the net area under gamma 
peak in the comparator and sample, respectively. Inter-
val time between the end of irradiation and the start of 
spectroscopy can be accounted for correction related 
to gamma energies according to Eq. (2): 

(2)   

where Td is the interval time between the end of irra-
diation and the start of spectroscopy; Tc is the time of 
counting in spectroscopy; p and pc are the uncorrected 
and corrected net area under gamma line, respectively. 
Some elements have more than one gamma line, so the 
product of detector efficiency and the ratio abundance 
of gamma line of the element can be considered as 
the criterion for each element [4]. In other words, the 
gamma line with the largest value of the criterion can 
be participated in element identification. Noting the 
linear nature of the measurement, the largest intensity 
of each element multiplied by the counts in each channel 
(or pulse-height energy bin per unit element) is propor-
tional to the elemental weight ratio. Moreover, the count 
in each channel is equal to the sum of counts for each 
element. For any sample with unknown mixture, the 
intensity is considered as a sum of all elements in each 

channel (in a least-squares sense). For each channel i (or 
energy bin), this is mathematically stated below: 

(3) 

where: yi are the counts of the sample with unknown 
mixture in the channel i; xj is the gamma spectrum of the 
element j in the sample; aij are the counts in the channel 
i of element j in the sample with unknown mixture; Ei is 
the random error in counts in the channel i; m is the to-
tal number of chemical elements constituting the sample 
and n is the total number of the multichannel analyzer 
(MCA) energy channels. The reduced chi-square value 
(χv

2) is formed according to the following relation: 

(4) 

where σi
2 is the variance of yi and is usually taken from 

Poisson distribution and, therefore, equal to yi. The xj 
is found by minimizing the reduced chi-square value. 
This is done in the usual way by setting the derivation 
of the reduced chi-square value with respect to each 
xj equal to zero to obtain a system of m equations. These 
equations can be solved simultaneously by the inverse 
matrix method to find xj. Then, qualitative and quantita-
tive analysis of trace elements is a proper normalization 
coefficient (aij) in Eq. (3). 

A neuro-fuzzy model is modified to determine 
normalization of aij by minimizing the error of the ap-
proximated spectrum. One feature of this technique 
is that it uses the whole spectrum in the identification 
process instead of only the individual photo-peaks. For 
this reason, it is potentially more useful for processing 
data from lower resolution gamma-ray spectrometers. 
This approach has been successfully tested with data 
generated by MC simulations and with field data from 
both sodium iodide and germanium detectors [8]. 

The following steps should be considered to modify 
quantitative NAA using neuro-fuzzy model as shown in 
Fig. 1: 
1. Collection of experimental data (experimental or 

simulation results). 
2. Proper neural network model selection. 
3. Training of recommended neural model. 
4. Evaluation of trained neural model. 

In the first step, data should be obtained from ex-
perimental or MC simulation processes for NAA. For 
experimental data, the collection (data acquisition) in 
NAA, a 60 cm3 P-type high purity germanium (HPGe) 
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Fig. 1. Design steps.
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detector with a resolution of 0.75 keV full width at half 
maximum (FWHM) at a photon energy of 122 keV 
and of 1.8 keV FWHM at 1332 keV was used. After 
irradiation, activity of the sample can be determined 
from experimental conditions such as irradiation and 
cooling time, neutron flux and irradiation position as 
well as elemental nuclear characteristic [12]. 

All of the effective parameters in experimental con-
ditions to form a gamma peak have been fixed, so that 
irradiation time is the only variable factor to predict the 
quantity of element. These conditions were simulated 
by MCNP-4C code (Monte Carlo N-particle transport 
code) [2] to complete training data procedure, so that 
the gamma spectrum was obtained from different 
samples in various conditions. Gaussian broadening 
of gamma peaks was calculated from the least squares 
method by determining detector efficiency. MCNP 
outputs from related tallies are considered similar to 
MCA for exact comparison. Structure of the elemental 
composition was considered in such a way that all of 
the elements could be identified at least in one of the 
spectra. The required data prepared for training of 
neuro-fuzzy model uses preprocessing such as omitting 
of the single escape, double escape and sum gamma 
peaks as well as normalized spectrum. 

The selection of appropriate structure for neural 
network model is a subsequent phase. The prototyped 
ANN was constructed as a multilayer perceptron net-
work and was trained with the Levenberg-Marquardt 
algorithm by using a training set from the collected data. 
The parameters used to train this ANN are listed in 
Table 1. Neurons in the input layer, meaning the energy 
bin of gamma from 100 keV to 3.6 MeV and output 
layers neuron, show the concentrations of elements in 
the unknown sample. 

Figure 2 shows the two experimental trained spectra. 
Figure 2a shows the gamma spectra from an experimen-
tal sample containing 3 mg of 38Cl and 4.8 mg of 193Ir. 
Figure 2b shows the gamma spectra of the experimental 
sample containing 19.97 mg of 71Zn. 

Neural network can identify elements by comparing 
differences and similarities in the trained spectrum and 
then making an elemental spectrum library by weight 
adjusting. After these steps (training neural network and 
making elemental spectrum), the LLS method can be ap-
plied. Gamma counts in energy bins and concentration 
of elements is introduced as an input and output of the 
model, respectively. After the training step, evaluation 
and validation of the model should be carried out. For 
this purpose, the residuals (prediction errors) of test 
samples are used. 

The collected data are divided into two sets, one 
is used for model training and the other is used for 
model validation. Different experimental samples were 
analyzed by this model showing a good accuracy of the 
neuro-fuzzy model. To minimize probable errors of 
the model in element diagnosis (with more than one 
gamma peak for identification) the detector efficiency 

and gamma-line abundance ratio and their product were 
used. In other words, the necessary condition for the 
existence of an element in the spectrum is the presence 
of gamma line with a maximum abundance. The next 
condition is the half-life of radioisotopes. For short 
term irradiation, long half-life radioisotopes were not 
considered and vice versa. After these considerations, 
the list of recommended elements in the sample was 
restricted. Qualitative and quantitative analyses should 
be independent of irradiation parameters and the neural 
model should show the same results for various irradia-
tion times. One method is the use of neural model training 
for all probable irradiation times, but for its time consum-
ing and massive output data production, this method is 
not practical for use. Another method is the training of 
some neural model for specific irradiation times and 
using a fuzzy system to interpolate for all the irradiation 

Table 1. ANN structure parameters 

Multilayer perceptron Type

1024-1024-63 Architecture
Log sigmoid Activation function

Fig. 2a. A sample of learning data containing 38Cl and 193Ir. 

Fig. 2b. A sample of learning data containing 71Zn.

Fig. 3. Neuro-fuzzy model.
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times. Two groups of neural models were considered for 
short and long-term samples regarding half-lives. Each 
of them includes 10 subcommon models according to 
Fig. 3. Irradiation times for short-term samples are 
considered as 5, 10, 25, 50, 80, 110, 150, 200, 250, 300 s 
and for long term are 5, 15, 35, 65, 105, 160, 220, 290, 
370, 480 h. Neural model is trained for all of the above 
irradiation times. The Takagi-Sugeno-Kang (TSK) fuzzy 
system [10] is used to interpolate between these times. 
The rule of fuzzy system is: 
    Rule i: if Tirradiation is Ti then out = NNi (x, Tirradiation) 
      Ti = 5, 10, 25, 50, 80, 110, 150, 200, 250, 300 s 
  – for short term, 
      Ti = 5, 15, 35, 65, 105, 160, 220, 290, 370, 480 h 
  – for long term. 

TSK membership functions have been chosen in 
such a way that in a desired irradiation time, two fuzzy 
rules or neural models are activated and a fuzzy sys-
tem produces a favorite output from combining these 
activated outputs. Figure 4 shows the TSK membership 
functions for short-term group. 

Results and discussion

The neuro-fuzzy model illustrated in Figs. 5 and 6 was 
tested by standard sample, SL-1, with known elemental 
concentrations. 10 mg of this sample was irradiated for 
1 min and then cooled for 35 s. Its spectrum was re-
corded for 5 min under laboratory conditions and it is 
shown in Fig. 5 [9]. Figure 6 shows the recorded gamma 
spectrum of this sample irradiated for 5 h. The SL-1 
sample elements are listed in Table 2 [7]. 

As shown in Figs. 5 and 6, the spectrum contains 
short and long-lived gamma peaks, double and single 
escape as well as sum peaks. Short-term and long-term 
components of gamma spectrum of the sample were 
introduced as an unknown input into the neuro-fuzzy 
model. Mass of elements and uncertainty of elemental 
analysis performed by NAA were reported in Table 3. 
These measurements were performed through several 
experimental analyses in the same conditions. Elements 

Fig. 4. TSK membership func-
tions for short-term group. 

Fig. 5. Gamma spectrum of SL-1 in short-term irradiation 
(1 min). 

Fig. 6. Gamma spectrum of SL-1 in long-term irradiation 
(5 h). 

Table 2. Mass of elements in 10 mg of certified reference 
material SL-1 (weight (mg) ± uncertainty (% of weight)) 

Element Weight (mg)

Iron (Fe) 0.674 ± 0.17%
Manganese (Mn) 0.0346 ± 0.016%
Titanium (Ti) 0.0517 ± 0.037%
Arsenic (As) 0.000275 ± 10.5%
Barium (Ba) 0.00639 ± 8.29%
Cerium (Ce) 0.00117 ± 14.5%
Cobalt (Co) 0.000198 ± 7.57%
Rubidium (Rb) 0.00113 ± 9.73%
Thorium (Th) 0.00014 ± 7.14%
Vanadium (V) 0.0017 ± 8.82%
Zinc (Zn) 0.00223 ± 4.48%
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revealed by the neuro-fuzzy model along with their 
weights are also listed in Table 3. As seen, the error 
of weight estimation is under 10%. In a typical NAA 
software, for each gamma line, more than one element 
may be assigned and it is up to users, according to their 
experience, which element is the correct one; that is why 
this method may have a low accuracy and takes a long 
time to analyze spectra. The present model can save time 
as well as enables precise determination of qualitative 
and quantitative NAA. It has the capability of identifying 
elements in the spectrum even with noisy or imperfect 
data that can be induced from high background or bad 
calibration of spectroscopy equipment. 

Conclusion 

In this study, an intelligent model was introduced using 
a neural network and a fuzzy system to do precise quali-
tative and quantitative NAA in one stage irradiation. 
This model has used the multilayer perceptron (MLP) 
neural network and TSK fuzzy system for function ap-
proximation and parameter estimation of LLS method. 
A standard sample was used for evaluation and valida-
tion of the model and irradiated as an unknown sample 
and its spectra was introduced as an input to the model. 
One of its advantages is a high precision of anticipation 
even by imperfect or noisy input data. By using this 
method, the peak overlap is decreased and there is no 
need to do repeated irradiations. Output results show 
a satisfactory agreement regarding the speed and ac-
curacy of qualitative and quantitative NAA. 
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Table 3. List of determined elements 

Element NAA in the laboratory (mg) Neuro-fuzzy (mg)

Vanadium (V) 0.00170 ± 0.000034 0.00182 ± 0.000058
Rubidium (Rb) 0.00113 ± 0.000056 0.00109 ± 0.000023
Manganese (Mn) 0.0346 ± 0.0014 0.0349 ± 0.00012
Barium (Ba) 0.00639 ± 0.00025 0.00642 ± 0.00011
Titanium (Ti) 0.0517 ± 0.0021 0.0506 ± 0.0019
Arsenic (As) 0.000275 ± 0.000011 0.000298 ± 0.0000079
Iron (Fe) 0.674 ± 0.013 0.625 ± 0.023
Lanthanum (La) 0.00052 ± 0.0000052 0.00056 ± 0.000016


