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Introduction 

In the Cotton-Mouton polarimetry one measures the 
phase difference 

(1) 

between two linearly polarized normal modes propa-
gating through the magneto-active plasma [1–3, 5] of 
depth L. Here k1 and k2 are wave numbers, and σ is an 
arc length along the sounding ray. The phase difference 
(1) determines the shape of the polarization ellipse, 
which is subject to a direct measurement. 

Equation (1) for the Cotton-Mouton phase differ-
ence is valid under the assumption that the orientation 
of the magnetic field B0 does not change along the 
sounding ray. However, this is not the case in tokamak 
plasmas, where magnetic lines, formed by a superposi-
tion of the toroidal and the poloidal magnetic field, 
acquire a helical form [16]. 

Segre [14] has obtained an exact solution for the 
Stokes vector [6] in the homogeneous and uniformly 
sheared plasma. In distinction to [15], in this paper we 
describe the evolution of the electromagnetic wave in 
an inhomogeneous and non-uniformly sheared plasma. 
Instead of the Stokes vector formalism (SVF), which is 
widely used in the plasma polarimetry [14, 15], we de-
scribe the polarization state of the electromagnetic wave 
field using the technique of a CAR [6] which adequately 
characterizes various parameters of the polarization 
ellipse [2], including the commonly used Stokes vector 
and the complex polarization angle. 

It is worth to emphasize that the polarimetry, along 
with the interferometry is the basic diagnostic method 
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in thermonuclear reactors, including the Joint Euro-
pean Torus (JET) and international thermonuclear 
experimental reactor (ITER). The plasma polarimetry 
provides essential information both on the plasma den-
sity and the magnetic field in thermonuclear reactors. 
Small changes in the polarization state, caused by the 
helical (spiral) form of magnetic field lines, are esti-
mated in this paper using the perturbation theory. The 
perturbative method is applied to a first order ordinary 
differential equation for the polarization ratio ξ = a2/a1, 
which characterizes the shape of the polarization ellipse. 
Thereat advantage of the perturbative approach – as 
compared to the numerical solution of Eq. (4) – lies 
in the fact that the perturbation method immediately 
leads to an explicit expression for the deviation of the 
polarization ellipse from the idealized situation where 
the static magnetic field in plasma has only a toroidal 
component. 

The quasi-isotropic approximation for electromagnetic 
waves in a weakly anisotropic plasma 

The quasi-isotropic approximation (QIA) of geo-
metrical optics approximation [4, 7, 8, 12, 13] provides 
an asymptotic solution of Maxwell equations for elec-
tromagnetic waves in a weakly anisotropic medium. In 
QIA, in the lowest (0-th) order the electromagnetic 
wave field is assumed to have the form:

(2)   E = ΓA(r)exp[ik0Ψ(r)]

where Ψ (r) and A (r) are respectively the eikonal and 
the amplitude of the scalar wave field in the isotropic 
medium with background permittivity ε0 (r), and Γ = 
Γ1e1 + Γ2e2 is the polarization vector Γ orthogonal to 
the ray. 

The complex amplitudes ratio ξ (CAR) is defined 
as [1, 11] 

(3)        ξ = Γ2 / Γ1 

The evolution of CAR in a weakly magnetized 
plasma is described by an equation derived in [9] on 
the basis of QIA equations: 

(4)  

We are using here the plasma parameters Ω1, Ω2, Ω3, 
Ω⊥, as suggested by Segre [14, 15]. 

A simple model of helical magnetic lines in the toroi-
dal system 

A convenient model of helical magnetic lines in the tor-
oidal plasma was suggested in [10]. Let φ be a toroidal 
angle, measured relative to the z axis, let θ be the poloi-
dal angle, measured relative to the vertical axis x, and 
let ρ be the distance from the circle R = const., where 
R is the large radius of the toroidal surface (Fig. 1). 

The Cartesian coordinates x, y and z, shown in 
Fig. 1, may be expressed via the toroidal variables θ, ρ 

and φ as follows: 

(5)     x = ρ cosθ,   y = (R + ρ sinθ) sinφ,   
            z = (R + ρ sinθ) cosφ 

Magnetic lines (5) are of a helical form, which may 
be modeled by assuming the following dependence of 
the poloidal angle θ on the azimuthal angle φ: 

(6)  

Here θ° is the initial poloidal angle. Instead of the 
toroidal angle φ we will use in the following the dimen-
sionful parameter μ = φR, which is an arc length along 
the circular axis R = const. Finally, the parameter ν 
which describes the rate at which the poloidal angle θ 
does change along the circular axis, plays the role of a 
“helical” factor. 

Let us assume that the sounding ray, crossing the plas-
ma along the y axis, is represented by the equations 

(7)          z = –R + σ,   x = 0,   z = 0 

Here arc length σ is measured from the point z = –R, 
where the ray crosses the circular axis. The point where 
the ray enters the plasma is given by σ0 = –a, while 
σexit = a is the point of exit. Correspondingly we have 
z0 = –(R + a) and zexit = –R + a, as shown in Fig. 2. 

Fig. 1. Helical magnetic lines, formed by the superposition 
of the toroidal and poloidal magnetic fields in the toroidal 
plasma. 

Fig. 2. The sounding ray, crossing the toroidal plasma along 
the z axis.
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Variations of the polarization angle in the sheared 
plasma 

Neglecting Faraday term Ω3 (1 + ξ2), one can express 
Eq. (4) in the form 

(8)   ξ = – iΩ1ξ + f (ξ). 

where the Cotton-Mouton term 

(9)  

dominates, whereas the term f(ξ) = –(1/2)iΩ⊥(1 – ξ2)sin 
2α~⊥, diminishing in the limit of α~⊥ → 0, serves as a small 
perturbation due to the sheared plasma.

Equation (4) with the dominant term (8) admits an 
exact solution 

(10)  

where ξ (σ0) is the initial value of the complex amplitude 
ratio ξ (σ) at σ = σ0 and 

(11)  

is the Cotton-Mouton phase difference in the sheared 
plasma. When α~⊥ = 0, the phase difference δS coincides 
with the shear-free Cotton-Mouton shift, described by 
Eq. (1). 

The phase shift δS (σ) differs from the shear-free 
phase shift δ0 (σ) by the value 

(12)  

The numerical modeling performed in [11] had shown 
that for the parameters similar to those of the ITER re-
actor the value δ1 (a) is small enough: δ1 (a) ≈ 0.02. This 
phase difference is approximately 50 times smaller than 
the Cotton-Mouton phase shift δ0 = 2Ω⊥a, which we have 
accepted here to be π/4. Thus the perturbation caused by 
the helical magnetic lines is of the order of about 1–2% 
of the Cotton-Mouton phase difference (1). 

A small value of δ1 (a) justifies the commonly ac-
cepted practice of ignoring the influence of a sheared 
plasma. Despite the smallness of the perturbation 
term δ1 (a), it plays, however, an important role in 
the polarimetric measurements, since it determines the 
potential accuracy of Cotton-Mouton polarimetry in for 
the plasma with helical magnetic lines. 

Improving the accuracy of the Cotton-Mouton 
polarimetry in the toroidal plasma 

The small shear term δ1 (a) may be further reduced, if 
we first estimate the shear angle α~⊥(σ) on the basis of 
a model of helical magnetic lines and then subtract the 
estimated perturbation δ1 (a) from the measured phase 
δmeasured (a) = arg ξ (a). The value δmeasured (a) – δ1 (a) may 
then be assumed to represent a shear-free phase differ-
ence. Such a simple method is expected to decrease the 

uncertainty in the Cotton-Mouton phase difference at 
least a factor of 5–10. The same is true for the product 
NeB⊥

2, which is estimated on the basis of the Cotton-
-Mouton phase shift δCM (a). 

Conclusions 

Influence of the sheared plasma on the Cotton-Mouton 
effect is analyzed, using the Eq. (4) for the complex 
amplitude ratio in a weakly anisotropic plasma, together 
with the simplified model for helical-like magnetic lines 
in a toroidal plasma, as suggested in [10]. Equation for 
the complex polarization angle (CPA) is solved using the 
perturbative approach, based on the assumption that 
the variable part of the shear angle is sufficiently small. 
It is shown that uncertainty of polarimetric measure-
ments in the conditions of the ITER plasma might be 
of the order of few percent of the unperturbed (shear-
-free) solution. A simple algorithm for the processing of 
experimental data is suggested, which allows for a no-
ticeable decrease in the uncertainty of the polarimetric 
measurements, caused by the sheared plasma. 
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