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Introduction 

The separation method was modified [9] to investigate 
the API in a magnetoactive nonuniform plasma by a 
monochromatic high frequency (HF) electric field of 
an arbitrary amplitude. The method was applied to 
solve different problems [13, 15, 16]: (1) the stabiliza-
tion effect of a strong HF electric field on a two-stream 
(Buneman) instability in plane and cylindrical plasma 
waveguides, as discussed, (2) an analysis of the effect 
of spatial plasma nonuniformity on the parametric 
instability of electrostatic waves in a plasma waveguides 
subjected to an intense HF electric field, as performed, 
and (3) an analytical expression of the reflection coef-
ficient for the electrostatic wave propagating along 
a nonuniform plasma slab immersed into the high-
-amplitude HF electric field, as presented. It has been 
shown [2] that the dispersion equation describing 
a parametric excitation of surface waves at the isotropic 
plasma boundary (vacuum) within the eigen frequency 
renormalization coincides with the equations that deter-
mine the parametric excitation of volumetric waves in a 
uniform unbounded plasma. Following this conclusion, 
a method for investigating the parametric interaction 
of the external HF electrical field with electrostatic 
oscillations in an isotropic bounded nonuniform plasma 
was proposed [5, 8]. The method facilitates separation 
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of the problem into two parts. The “dynamical” part 
describes the parametric build-up of oscillations and the 
corresponding equations within the renormalization of 
eigen frequencies coincides with equations for the para-
metrically unstable waves in an infinite uniform plasma. 
Natural frequencies of oscillations and spatial distribu-
tion of the amplitude of the self-consistent electrical 
field are determined from the solution of a boundary-
-value problem (the “space” part) by taking into account 
the specific spatial distribution of the plasma density. 
The proposed approach (“the separation method”) 
[11] is significantly simpler than the standard method 
employed in the theory of the parametric resonance in 
a nonuniform plasma [12]. Therefore, it is of special 
interest to apply the separation method to solving 
different problems which involve a parametric excita-
tion of electrostatic waves in a bounded nonuniform 
plasma. Demchenko et al. [4] reported the analysis of 
the effect of the spatial plasma nonuniformity on the 
parametric instability of electrostatic waves in a mag-
netized cylindrical waveguides subjected to an intense 
HF electric field. It has been already known that non-
uniformity of plasma density leads to: (i) an increase 
of the threshold value of the pump wave amplitude 
above which a parametric amplification occurs, and 
(ii) to the localization of an unstable waves in a finite 
region of plasma. This suggests that an absolute char-
acter of the instability had been assumed. It should be 
emphasized that from the experimental point of view, 
it is vital to know whether a given parametric instability 
is absolute or convective. This is so essential because 
the nature of the parametric instability determines the 
mechanism of its saturation. The convective instability 
reaches saturation at a comparatively low level, due to 
the convection of energy of the decay product (second-
ary waves) away from the three wave resonance region. 
The absolute instability saturates at a higher level 
under the action of various nonlinear effects. From 
this point of view the absolute parametric instability 
[7] plays a crucial role in the energy transfer process 
from the electromagnetic radiation to the plasma and 
it may have important consequences for experiments 
on radio frequency (RF) plasma heating in tokamaks 
and for the laser fusion. 

In this paper we also developed a method which per-
mits to reduce the problem of the absolute parametric 
instability [4, 15] excited by a monochromatic pumping 
field of an arbitrary amplitude in a nonuniform mag-
netoactive plasma to the problem of a parametric excita-
tion of spatial oscillations in a uniform isotropic plasma. 
Below, the parametric excitation of low-frequency 
waves, with their dispersion completely determined 
by a high-frequency field, in a strong magnetic field is 
discussed for cases where the cyclotron frequency of 
ions significantly exceeds the frequency of the excited 
oscillations. The separation method [17] is used to 
investigate the API in a bounded nonuniform plasma 
under the effect of a pump field, static magnetic field 
and warmness of the plasma waveguide. Both the pump 
field E

→

p = E
→

0 sin(ω0t) and the static magnetic field B
→

0 
are directed along the z-axis. Assuming the intensity of 
the magnetic field to be high enough (ωcα >> ωpα), the 
motion of plasma particles is considered to be confined 
along the z-axis only. 

Mathematical model 

Separation method in the problem of absolute para-
metric instability 

The initial system of equations consists of the two-fluid 
equations combined with the Poisson’s equation [15]: 

(1)  

(2) 

(3) 

where nα and V
→

α are the density and velocity of particles 
of species; α, P is the scalar pressure and Φ is the po-
tential of the self-consistent electric field, and α ≡ (e, 
i). We may relate the pressure and density through the 
equation of state (an alternative to truncating the mo-
ment equations) in the form: pα = v2

sαρ1α, where v2
sα = 

Tα/mα is the square of the thermal velocity of species α 
and ρ1α = mn1α is the mass density. In the equilibrium 
state, the particles velocity u→α(0,0,uα) is determined by 
the following expression: 

(4)  

The plasma is unperturbed at t = 0, so that for t > 0; 

(5)  

where the perturbations of velocity δV
→

α(0,0,δVα), den-
sity δnα and electrical potential ϕ can be represented 
in the form (δV

→

α,δnα,Φ) ~exp(i·kz·z). Introducing a new 
variable: 

(6)  να = eα δnα · exp(– iAα), 

where: Aα = –aα sin(ω0t) and aα = [(eα·k·E0) / (mα·ω0
2)] 

≈ ae (as [(ai/ae) ≈ (me/mi)] << 1), then linearizing the 
system of equations of hydrodynamics (1) and (2) 
supplemented by Poission’s Eq. (3) and using Eq. (6), 
we obtain: 

(7)  

where: L^2 = –kz
2·n0α. Poission’s Eq. (3) takes the opera-

tor form: 

(8) 

Assuming vα(x,t) = vα1(t)·vα2(x), Φ(x, t) = Φ1(t)·Φ2(x) 
and separating the variables in Eqs. (7) and (8), we 
obtain: 
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(9) 

where: ε(x,p) = 1 – [(ω2
Pe(x)) / p2] and p is a constant. It 

is found also that the final form of equations describing 
the “dynamical” (parametric) part of the problem: 

(10)  

(11) 

where: η2 = vse · k
2
2, ωi = [(me/mi) · (αi/αe) vi1] and {αsαi 

= –[(mi/me)· (4π/p2)]}. In this case, the system of Eqs. 
(10) and (11) coincides (within the redefinition of ω2

Pe 
→ p2, ω2

Pi → (me/mi)·p2, vse = 0 in a cold plasma) with 
the system describing HF suppression of Buneman 
instability in a uniform unbounded plasma [2] and also 
with the system of equations describing parametric 
excitation of spatial oscillations in a uniform isotropic 
plasma [9]. 

Solution of the “spatial Eq. (9)” 

Now, let us examine Eq. (9) for different cases: 

A) API in uniform plasma 

A uniform plasma case corresponds to the propagation 
of volumetric waves (ε0 < 0) with dispersion: 

(12)  

B) API in nonuniform plasma 

B.1) Exact harmonic oscillator 

API in a nonuniform plasma is considered in which the 
density distribution is determined by the relation n = n0 
[1 – (x2/L2)] [8]. In this case Eq. (9) takes the form: 

(13)  

Eq. (13) yields: 

(14)  

where:                  ,                     and                      .  

The solution of Eq. (14), which describes trapped 
oscillations, are possible for A < 0 (ε0 < 0) in the region  
–√|A|/B < x < √|A|/B. By substituting: ξ = (kzωp0/Lp)1/2⋅x 
in Eq. (14) we obtained the equation: 

(15)                                          and    

By substituting: Φ2 = ψ(ξ) · exp(– ξ2/2), in Eq. (15) 
and introducing the notation: 

(16) 

the following equation is obtained: 

(17)  

for the function ψ(ξ). The solutions of this equation are 
Hermite polynomials [1]: 

(18)  

which satisfy the localizability condition (the width of the 
region of localizability of the oscillations is assumed to 
be significantly less than the width of the plasma layer) 
only for integral positive values of the number n (includ-
ing zero). This fact permits considering Eq. (16) to be an 
analog of the quantization rule, which serves to determine 
the possible values of the quantity p (as it is a standing 
wave). Thus, the solution of Eq. (15) takes the form: 

(19)  

From Eq. (16), we get: 

(20)  

where Qn = [(2n + 1) / (kzL)].  Thus, from Eq. (20), we 
obtain: 

(21)  

For lower integer n, at Qn << 1, Eq. (20) takes the 
form: 

(21a)  pn ≈ ωp0 ⋅ {1 – (Qn / 2)} 

Thus, the oscillations are described by Eq. (17). 
The other solution of Eq. (20) is negative. At L → ∞, 
Qn = 0, (i.e., n = 0), p ⇒ ωp0 (plasma waves in a uniform 
plasma), Eq. (20), takes the form: 

(22) 

This equation is the same as in a cold plasma case 
[9], i.e. the warm plasma has no effect on the space part 
of the problem (only through p). 

B.2) Bounded harmonic oscillator (bounded plasma) 

While solving the problem (B.1), it was assumed that: 

(23)  Φ2 → 0   at  x → ± ∞ 

(an unbounded plasma). But when considering it as a 
bounded plasma (metallic walls at x = ± b, instead of 
Eq. (23) we should use: 

(24)  Φ2 = 0   at  x = ± b 

Thus, Eq. (14), takes the form: 
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(25) 

where h ≡ (kL) >> 1. Putting:                                    ,  
in Eq. (25), we get: 

(26) 

where: ωp0 ≈ p0, ε0 ≈ 0, ωp0 is the electron plasma fre-
quency at x = 0 and p0 is the separation constant at 
interger n = 0. In this case the solution of the above 
Eq. (26) gives us the wave oscillation described by 
the inequality: 

(27)     kL = 3/2 (2πn + π ± π/4) >> 1,  
              kL ≈ 3πn,  n >> 1 

Thus, at an integer n >> 1, the plasma inhomogene-
ity is completely bounded by a metallic wall. 

It can be concluded then that for the inhomogeneity 
plasma, the frequency and the growth rate of the wave 
oscillation are bounded by a metallic wall. 

Solution of the “temporal” (time-dependent) 
equations 

Following the procedure developed in Ref. [3] the 
dispersion equation of low-frequency oscillations (ω ≈ 
(me/mi)s) can be derived from Eqs. (7). Under the para-
metric resonance condition (nω0 ≈ s, n-integer), we get: 

(28)  

where Δn = (s/nω0)2 – 1, s2 = p2 + η2, η2 = v2
se·k2

z and it 
can be supposed here that the resonance “mismatch” Δn 
satisfies  the inequalities (me/mi)·(p/s)4 << |Δn| << 1. 
From Eq. (28) we find the frequencies of parametrically 
excited plasma oscillations: 

(29)  

with the Bessel function, Jn(a). 
Equation (29) yields an unstable solution with peri-

odic instability (Δn < 0). In this case γper = I·m·ω > 0, i.e. 
small perturbations in the plasma grow exponentially in 
time, if the following condition is satisfied: 

(30)  

The growth rate of the instability is determined by 
the expression: 

(31)  

The maximum value of the growth rate γper is 
reached at: 

(32)  

By substituting Eq. (32) into Eq. (31) it can be 
found: 

(33)  

The main feature of Eqs. (31)–(33) relies on the 
existence of a separation constant p which enables us 
to account for the plasma nonuniformity. 

From Eq. (31), it follows that the threshold value of 
the HF field amplitude in case of periodic instability is 
determined by the relation: 

(34)  

At small amplitudes of the pumping wave, from 
Eq. (34) we have: 

(35)  

At η2 = v2
th·k2

z = 0, Eq. (33) takes the form: 

(36)  

(37)  

At small amplitudes of the pumping wave, from 
expression (37) we have: 

(38)  

which is in agreement with the work of Demchenko and 
Omel’chenko [8] for the cold plasma case. 

Equations (33) and (36) for the periodic API 
become: 

(39)  

Thus, from Eq. (39), it can be concluded that in 
the warm plasma the growth rate of a periodic API is 
smaller when compared to the cold plasma [8]. 

Conclusion 

The effect of a 1-D plasma nonuniformity on the API 
of elecrostatic waves in a magnetized pumped warm 
plasma has been investigated with the separation 
method. Different solutions for the spatial equation 
were examined for the following cases: A) API in a 
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uniform plasma (Eq. (12)), B) API in a nonuniform 
plasma, where two cases were studied: B.1) the exact 
harmonic oscillator (Eq. (21)), and B.2) the bounded 
harmonic oscillator (a bounded plasma, Eq. (27)). 

It follows from Eqs. (22), (33), (34) and (35) that 
taking into account a nonuniformity of the warm plasma 
density results in a decrease in the maximum values 
of the oscillation build-up increments and an increase 
in the threshold value of the electric field amplitude 
of the pumping wave in comparison with the case of 
a uniform plasma. These results are consistent with the 
results of Refs. [4, 8]. 

Equation (22) is the same as the corresponding 
equation in the cold plasma case [8]; i.e. the warm 
plasma has no effect on the space part of the problem 
(only through the separation constant p). The main 
feature of expressions (31)–(33) consists in the existence 
of the separation constant p which enables us to account 
for the plasma nonuniformity. It can be concluded from 
Eq. (39) that the growth rate of periodic API is smaller 
in a warm plasma than in a cold plasma, which was 
considered by Demchenko et al. [8]. 

It should be noted that our approach is significantly 
simpler than the method ordinarily employed in the 
theory of a parametric excitation of waves in a non-
uniform plasma [10]. Therefore, it is of practical inter-
est to apply the method to solving different problems 
in a parametric resonance in a nonuniform plasma 
taking into account finite plasma temperature and 
nonuniformities of the HF electric and static magnetic 
fields. The method developed in Refs. [6, 14] is best 
suited for investigating the parametric effects under 
a high-amplitude pump wave, W = n0Te. This method 
was modified [18] for investigating the API in a magne-
toactive nonuniform plasma by a monochromatic HF 
electric field of an arbitrary amplitude. 
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