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Introduction 

SVM is a relatively new soft computing method based 
on statistical learning theory [25]. In SVM, original in-
put space is mapped into a high dimensional dot product 
space called feature space in which the optimal hyper 
plane is determined to maximize the generalization 
ability of the classifier. The optimal hyper plane is found 
by exploiting a branch of mathematics, called optimi-
zation theory, and respecting the insights provided by 
the statistical learning theory (SLT) [16]. SLT is based 
on structure risk minimization and has good learning 
ability even though fewer learning samples are used. 
Recently, SVM is widely used in many realms, such as 
face recognition [11], non-linear equalization [24] and 
spam categorization [6], system reliability forecasting 
[7, 21]. In fault diagnosis area, some researches also 
have been done, [29] have found recent applications in 
data driven modeling, classification and process fault 
detection [10]. SVM based fault classifiers are claimed 
to have better generalization properties than artificial 
neural network (ANN) ones [22]. SVM was originally 
designed for binary classification, which is not suit-
able for fault diagnosis, because it has several fault 
classes in addition to health condition. The main aim 
of an SVM classifier is obtaining a function f(x), which 
determines the decision boundary or hyper plane [5]. 
Kernel-Adatron algorithm was proposed in [5] which 
could automatically create the decision hyper plane 
without testing on a validation data. Unfortunately, this 
algorithm is ineffective if the data have a flat ellipsoid 
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distribution [17]. Therefore, one possible way to solve 
the problem is to consider the distribution of the data. 
Interestingly, various specific functions in SVM, after 
the learning stage can create the decision hyper plane 
of the same type [19]. To solve the problem, a systematic 
method for selecting SVM parameters was provided 
in [20]. GASVM is introduced in this paper and is ex-
emplified by solving the problem of fault classification 
in a nuclear power plant (NPP). There are as many as 
30 variables in the process comprising various pressures, 
temperatures, flow, etc. that can be monitored over 
a period of time. The data reflects a good amount of 
variability and represents the dynamics of the process. 
The problem of classifying faults in PWRNPP is tackled 
in this paper. Multiple faults in a PWRNPP system are 
generated with the aim to classify them as accurately 
as possible based on the knowledge of the dataset. This 
paper investigates the use of genetic algorithms (GAs) 
[13] to automatically tune the parameters of the binary 
SVMs contained in common decomposition strategies. 
Thus, the parameter adjustment problem was formu-
lated as a search for combinations of parameter values 
able to minimize the error rates obtained in the multi-
-class problem solution. The GA searches for a set of 
parameter values which will be common to all classifiers 
in the decomposition. The paper is organized as follows: 
section ‘Introduction’ introduces an overview on the 
research subject. The monitored states of PWRNPP are 
given in the section ‘Pressurized water reactor nuclear 
power plant (PWRNPP)’. The mathematical model 

of the NPP is presented in the section ‘Mathematical 
dynamic model’. The concepts of SVM are reviewed in 
the section ‘Support vector machine (SVM)’. Applica-
tion of SVM in multi-classification is explained in the 
section ‘Multi-classification SVM’. GA is addressed in 
the section ‘Genetic algorithm (GA)’. Proposed GASVM 
scheme is clarified in the section ‘Proposed GASVM 
scheme’. Simulation and testing procedures are car-
ried out in the section ‘Simulation and testing’. Results 
of applying GASVM to classify multiple faults in 
PWRNPP are scrutinized in the section ‘Results’. Finally 
conclusions are given in the section ‘Conclusions’. 

Pressurized water reactor nuclear power plant 
(PWRNPP) 

The NPP can be subjected to many failures which can 
affect almost some or all of its state variables. Since the 
performance of any statistical method depends solely 
on the datasets on which it is trained, it is advisable that 
datasets should be created such that all possible dynam-
ics of the state variables are captured. The selected fea-
tures should be as decorrelated as possible to avoid the 
problem of multicollinearity. The mathematical model 
of the PWRNPP [23] based on a neutronic process and 
thermal hydraulic process with the components: reactor 
core, pressurizer, pump, steam generator is employed to 
investigate the effectiveness of the proposed algorithm. 
The list of PWRNPP state variables is given in Table 1. 

Table 1. List of PWRNPP state variables 

State variable State symbol State name

X1 Tpi Primary inlet plenum
X2 Tp1 Parallel flow first primary fluid lump
X3 Tp2 Parallel flow second primary fluid lump
X4 Tp3 Counter flow first primary fluid lump
X5 Tp4 Counter flow second primary fluid lump
X6 Tpo Primary outlet plenum
X7 Tm1 Parallel flow first tube metal lump
X8 Tm2 Parallel flow second tube metal lump
X9 Tm3 Counter flow second tube metal lump
X10 Tm4 Counter flow second tube metal lump
X11 Ls1 Evaporator sub-cooled water lump
X12 Ps Secondary pressure
X13 Xe Steam mass quality
X14 LDw Drum water level
X15 TDC Down comer avg. temperature
X16 THL Primary water inlet temperature (hot water)
X17 Tc1 Inlet temperature to the core
X18 TCL Primary cold leg temperature
X19 TF Average fuel temperature
X20 TUP Reactor upper plenum temperature
X21 TLP Reactor lower plenum temperature
X22 PN Normalized power level
X23 PP Primary pressure
X24 Rt Total reactivity
X25 TC2 Coolant temperature at the exit of the core
X26 W1 Inlet mass flow rate to the evaporator sub-cooled water lump
X27 W2 Outlet mass flow rate to the evaporator sub-cooled water lump
X28 W3 Inlet mass flow rate evaporator steam/water mixture lump
X29 W4 Inlet mass flow rate evaporator steam/water mixture lump
X30 TFw Feed water avg. temperature



325A real-valued genetic algorithm to optimize the parameters of support vector machine for...

The simplified block diagram for dynamic model of the 
primary first loop of the PWRNPP is shown in Fig. 1. 

Mathematical dynamic model 

Reactor 

The reactor model includes representations for point 
kinetics and thermal balance to describe how the 
nuclear heat generated by fission in the fuel elements 
is transferred to the coolant [23]. 

Neutron kinetics 

A point kinetics model with six delayed neutron groups 
and reactivity control from external sources (e.g. control 
rods and boron injection) and feedback from moderator 
temperature, Doppler and void was formulated. 

(1)  

(2)  

where: Φ is the neutron density or fission power; Ci is 
the concentration precursor; ρex is the reactivity; B is the 
delayed neutron fraction; l is the neutron generation 
time; λi is the decay constant for the i-th delayed neutron 
group, and t is time. 

Feedback reactivity 

(3)  ρT = αp (Pp – Ppo) 

where: αp is coolant pressure coefficient of reactivity; 
Pp is the primary system pressure; Ppo is the primary 
system initial pressure. 

The fuel temperature reactivity is given by: 

(4)  ρD = αf (Tf  – Tfo) 

where: αf is fuel temperature (Doppler) coefficient of 
reactivity; Tf is the average fuel temperature; Tfo is fuel 
temperature when the reactor is cold. 

The moderator temperature coefficient of reactivity 
is defined as 

(5)  

Fig. 1. Simplified block diagram for dynamic model of the primary first loop of the PWRNPP. 
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Vessel lower plenum 

All the plenums in the system were modeled as well 
mixed volumes the equation is 

(6)  

where: TLP is reactor lower plenum temperature; TCL is 
primary cold leg temperature; τLp is fluid residence time 
in the lower plenum. 

Reactor core 

Fuel 

The fuel element is simulated by employing a lumped 
parameter model for thermal conduction in the fuel 
[27]. The transient heat transfer process for the fuel 
element may be written as 

(7)  

where: Tf is the average fuel temperature; Tc1 is inlet 
coolant temperature;(MCp)f total heat for fuel lump 
capacity and Af is the total heat transfer area. 

Coolant

(8)  

(9)  

where: Tc2 is outlet coolant temperature; (MCp)c is total 
heat capacity of coolant associated with the fuel lump; 
τ is residence time of the coolant in the core; TCin is 
inlet temperature to the core and U is overall fuel – to 
coolant heat transfer coefficient. 

Vessel upper plenum 

The equation for the upper plenum is given by: 

(10)  

where: TuP is the reactor upper plenum temperature; 
Tc2 is coolant temperature at the exit of the core; τup is 
residence time of the coolant in the upper plenum. 

Reactor coolant pump 

For predicting a flow transient through the primary 
loop, the equation for the time rate of the flow rate 
changes of the reactor coolant pump as the following. 

(11)   

where: Wref is the set point of the primary coolant pump 
flow rate and τpump is the time constant for the primary 
coolant pump. 

Pressurizer model 

The pressurizer model is based on mass, energy, and 
volume balances. 

Water mass balance 

(12)   

Steam mass balance 

(13)  

Water energy balance 

(14)  

Steam energy balance 

(15)  

Volume balance 

(16)       Vs + Vw = Vt 

where: Mw is mass of water in the pressurizer; Ms is mass 
of steam in the pressurizer; Wwi is mass flow of water 
into (or out) of the pressurizer; Ew is internal energy 
of water in the pressurizer; Es is the internal of steam 
in the pressurizer; hwi is enthalpy of water entering the 
pressurizer; hs is enthalpy of steam in the pressurizer; P 
is pressure in the pressurizer; q is rate of heat addition 
to the pressurizer water from the electric heaters; Ts is 
saturation temperature; Vw is volume of water in the 
pressurizer; Vs is volume of steam in the pressurizer; Vt 
is internal volume of the pressurizer. And the primary 
pressure is [15]: 

(17)  

where: hsp is enthalpy of sub-cooled water calculated 
at the cold leg temperature; hwi is the enthalpy of sub-
-cooled water calculated at the hot leg temperature and 
hw is the enthalpy of saturated water at pressure P. 

U tube steam generator model 

Primary side lump 

1
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Primary inlet plenum  –

(18) 

Parallel flow first primary fluid lump  –

(19) 

Parallel flow second primary fluid lump  –

(20)  

Counter flow first primary fluid lump  –

(21)  

Counter flow second primary lump  –

(22) 

Primary outlet plenum  –

(23)  

Metal tube lumps  –

(24)  

(25) 

(26) 

(27) 

Secondary side lump  –

(28) 

(29) 

Evaporator steam/water mixture lump  –

(30)  

Support vector machine (SVM) 

SVM is an effective approach for pattern recognition. 
The basics of the SVM are found in [5, 16]. For the 
two classes problem, we assume that we have a dataset, 
which given m as the amount of the labeled training 
samples, xi are the training samples while yi are the 
targets or labels in N dimensional space as: 

(31) 

In SVM, the results in a linearly separable problem 
correspond to a decision function: 

(32)   f(x) = sgn((w . x) + b) 

The set of samples is said to be optimally separated 
by the hyperplane if it is separated without error and the 
margin is maximal, this hyperplane bisects the shortest 
line between the convex hull of the two classes, thus, 
it must satisfy the following constrained minimization 
as: 

(33) 

This hyperplane can be constructed by solving 
quadratic optimization problem which is the solution 
of w and expand with w = Σ

i
αi yi xi in terms of a subset of 

training pattern that lie on the margin. These training 
patterns xi are called support vectors, which provide the 
important information of classification problems. Then 
the decision function can be formulated as: 
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(34)  

For the linearly non separable case, a modification 
on previous minimization problem needs to be done to 
recover the misclassification data points. A new penal-
izing error variable is introduced; ε as the measurement 
of violation on the constraints: 

(35)  

C is used to weight the penalizing parameter εi. The 
SVM separate a non-linear separable classification 
problem by mapping the data into a feature space via 
a non-linear map. This solution is done by using kernel 
(K). By using kernel, the non-linear separated samples 
input space will be turn out to be linearly separated 
after being mapped in feature space. The decision 
boundaries function for non-linear problems can be 
formulated as: 

(36)  

There are a lot of kernel functions. Some of them 
are shown in Table 2. Any type of kernel can chose 
according to experiments as it is dependent on the 
sample data. 

Multi-classification SVM 

The original SVM is binary classification method, i.e., 
it classifies the two classes problems. However, fault 
classification requires multi-class classification. There 
are three methods for multi-classification; namely: 
one to one, one to all and one to others. One to one 
algorithm [18, 27] constructs all two class SVM classi-
fiers between any two classes so k (k – 1)/2 two class 
SVM classifiers can be constructed in all for a case of k 
classes. In the recognition stage, a new sample x is input 
to the classifier between the m class and the n class with 
classifying function: 

(37)  

If the classifier shows that x belongs to the m class, 
then a ballot is cast for the m class. After recognized by 
all these k (k – 1)/2 classifiers, x can be judged to belong 
to the class that has the most ballots. Some disadvan-
tages of this algorithm are: (1) the number k (k – 1)/2 
of two class SVM classifiers increases greatly with the 
class number k, calculation increases greatly as well, 
and the rate of training and recognition is very slow; (2) 
when two or more classes have the same ballots, it is 
hard to judge which class the new sample x belongs to; 
(3) there is at least a class whose ballots are the most, 
so a new sample x that does not really belong to any of 

these k classes would be misjudged to belong to them 
and the classifying error appears. 

One to all algorithm [18, 27] takes any one class 
m of these k classes as a category, takes the rest k – 1 
classes as another category, constructs a two class SVM 
classifier and names it SVM m. In this way, k two class 
SVM classifiers can be constructed in all for a case of k 
classes. The classifying function of SVM m is: 

(38)  

In the recognition stage, the new sample x is input 
to all these k classifiers. There are k outputs in all. In 
this classifier, 1 class represents (class 1) and 0 class 
represents (classes 2 and 3). Unlike one-vs.-one clas-
sifier, all data are used in each classifier. To classify 
an observation, y pred is determined for all classifiers. 
The test point is identified as the class with maximum y 
pred, which is class 1 in this example. The new sample x 
is judged to belong to the class whose classifier has the 
largest output. Some disadvantages of this algorithm 
are: (1) all samples have to be taken into the training 
of all these k classifiers; in the recognition stage, only 
after all these k classifiers have recognized the new 
sample x can the classification result be obtained. There-
fore the calculation is very time-consuming and the rate 
of training and recognition is slow as well; (2) there is 
at least a two-class SVM classifier whose output is the 
largest, so a new sample x that does not really belong to 
any of these k classes would be misjudged to belong 
to them and the classifying error appears; (3) when two 
or more classifiers have the same outputs, it is hard to 
judge which class the new sample x belongs to. 

In ‘one to others’ algorithm [12, 27] for a data set of 
k classes, the classifying function is given by: 

(39)  

where: l is sample number; d is dimension of sample 
vector; k is class number. First, we have a case of k 
classes, take a top-priority class from these k classes as 
a category, and take the rest (k – 1) classes as another 
category, construct a two-class SVM classifier and name 
it SVM 1. Next, this top-priority class is excluded, and 
then we have a case of (k – 1) classes, take a top-priority 
class from those (k – 1) classes as a category, and take 
the rest (k – 1 – 1) classes as another category, and 
construct a second two-class SVM classifier and name 
it SVM 2, and so on and so forth till the last two-class 
SVM classifier is constructed and named SVM (k – 1). 
In this way, (k – 1) two-class SVM classifiers can be 
constructed in all for a case of k classes. In the fault 
diagnosis, the most common or the most dangerous 
fault can be given top priority. The ‘one to others’ 
multi-class SVM classifier is a binary tree composed 
of several two-class SVM classifiers organized by fault 
priority as shown is Fig. 2. 

Genetic algorithm (GA) 

GA is a stochastic search algorithm modeled on the 
process of natural selection, which underlies biologi-
cal evolution [26]. GA has been successfully applied in 

( ) sgn ( . )i i i
i

f x y x x b⎛ ⎞= α +⎜ ⎟
⎝ ⎠
∑

1min ,    ( ) 1
2

l
T

i i i
i

w w C y w x b⋅ + ε ⋅ + ≥ − ε∑

( ) ( , )i i i
i

f x y K x x b= α +∑

Table 2. Types of kernel functions 

Kernel function Classifier

k(x,xi) = exp(–||x – xi||2 /2σ2) RBF
k(x,xi) = (xT.xi + 1)d Polynomial
k(x,xi) = (xT.xi) Linear

1
( ) sgn ( , )

l
mn mn mn mn

i
i

f x y K x x b
=

⎧ ⎫= α +⎨ ⎬
⎩ ⎭
∑

1
( ) sgn ( , )

l
m m m m

i
i

f x y K x x b
=

⎧ ⎫= α +⎨ ⎬
⎩ ⎭
∑

( , ),   1, 2,..., ,   ,   {1,2,..., }d
i i i ix y i l x R y k= ∈ ∈



329A real-valued genetic algorithm to optimize the parameters of support vector machine for...

optimization and machine learning problems [3, 17]. 
GA evolves a population of chromosomes as potential 
solutions to an optimization problem. There are three 
major design decisions to consider when implementing 
a GA to solve a particular problem. A representation 
for candidate solutions must be chosen and encoded 
on the GA chromosome, fitness function must be speci-
fied to evaluate the quality of each candidate solution, 
and finally the GA run parameters must be specified 
including which genetic operators to use. 

Initial population 

In general, the initial population is generated randomly. 
In this way, however, we will end up with a population 
where each individual contains the same number of 
1’s and 0’s on the average. To explore subsets of dif-
ferent numbers of features, the number of 1’s for each 
individual is generated randomly. Then, the 1’s are 
randomly scattered in the chromosome. 

Mutation 

Mutation is the genetic operator responsible for main-
taining diversity in the population [15]. Mutation oper-
ates by randomly “flipping” bits of the chromosome, 
based on some probability. This probability should 
usually be set fairly low. If it is set to high, the search 
will turn into a primitive random search. 

Crossover 

Crossover is a genetic operator that allows new solu-
tion regions in the search space to be explored. It is a 
random mechanism for exchanging genes between two 
chromosomes using the one point crossover, two point 
crossovers, or homologue crossover. Offspring replaces 
the old population using the elitism or diversity replace-
ment strategy and forms a new population in the next 
generation. Genetic crossover and mutation operation 
is shown in Fig. 3. 

Replacement 

Replacement schemes determine how a new population 
is generated. The concept of overlapping populations 
is used in this work, where parents and offspring are 

merged, and the best individuals from this union will 
form the next population. 

Selection 

This is the process of choosing parents for reproduction. 
Usually, it emphasizes the best solutions in the popula-
tion, but since the replacement scheme employed here 
already offers enough evolutionary pressure, a random 
selection approach was chosen. 

Random immigrant 

This is a method that helps to keep diversity in the popu-
lation, minimizing the risk of premature convergence 
works by replacing the individuals whose fitness is under 
the mean by recently initialized individuals [1]. Random 
immigrant is invoked when the best individual does not 
change for a certain number of generations. 

Fitness function 

The main goal of feature selection is to use fewer 
features to obtain the same or better performance [2]. 
Fitness function is one of the most important parts in 
genetic search. This function is used to evaluate the 
effectiveness of each individual in a population, so it 
has an individual as an input and it returns a numeri-
cal evaluation that must represent the goodness of the 
feature subset. The search strategy’s goal is to find 
a feature subset minimizing this function. The crossover 
and mutation functions are the main operators that 
randomly impact the fitness value. The evolutionary 
cycle of GA is shown in Fig. 4. 

Fig. 2. Framework of the ‘one to others’ SVM algorithm.
Fig. 3. Genetic crossover and mutation operation.

Fig. 4. Evolutionary cycle.
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Proposed GASVM scheme 

SVM with radial basis function (RBF) is used in this 
work. The selection of the SVM parameters values plays 
an important role in the performance of SVM [4]. To 
design an effective SVM model, values of parameters 
in SVM have to be chosen carefully in advance [8, 14]. The 
SVM with RBF includes the following parameters: 
a) Regularization parameter C, which determines the 

tradeoff cost between minimizing the training error 
and minimizing the complexity of the model [9]. 

b) Parameter σ of the kernel function which defines the 
non-linear mapping from the input space to some 
high-dimensional feature space, which constructs a 
non-linear decision hyper surface in an input space 
[28]. 
In this study, GA is used to determine the optimal 

values of C and σ that assure highest predictive accuracy 
and generalization ability simultaneously. The proposed 
model is named GASVM. Since two parameters should 
be optimized, the chromosome should comprises three 
parts, C and σ as shown in Fig. 5, where the binary 
coding system was used to represent it. 

The main parameters of the GA are given hereafter: 
population size = 100, maximum number of generations 
= 1000, length of binary string of chromosome = 8, 
probability of crossover = 0.7, probability of mutation 
= 0.3, adjustable range of C = 1 → 1000 and adjustable 
range of σ = 1 → 100. Fitness function, assessing the 
performance of each chromosome, should be defined. 
Many forecasting performance indices can be used as 
a fitness function, such as MSE (mean-squared error), 
RMSE (root-mean-squared error), MAE (mean abso-
lute error), and MAPE (mean-absolute percent error). 
In this research, the aim is to maximize the ROCC (rate 
of correct class) which expresses the SVM performance 
as described in Eq. (10). 

(40)  

where: l is the number of training data; yi is the actual 
output; yt is the expected output. The fitness function 
is selected as: 

(41)   

GA is used to estimate the values of c and σ that 
minimize the fitness function (maximize ROCC). 
The scheme of the proposed GASVM used to classify 
PWRNPP faults is shown in Fig. 6. Fig. 5. The chromosome comprises three parts C and σ.

1

1ROCC SVM performance *100%
l

i ty y
l
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠
∑

1

1Fitness function ROCC *100%
l

i ty y
l
⎛ ⎞= − = − −⎜ ⎟
⎝ ⎠
∑

Fig. 6. The scheme of the proposed GASVM.
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Simulation and testing 

To investigate the proficiency of the proposed GASVM 
in classifying overlapped multiple failure classes, 
PWRNPP simulator is used to generate three classes of 
faulty data. The simulated faults are given in Table 3. 

Fault 1 is associated with reactivity of the reactor 
which affects the reactor temperature. Faults 2 and 3 are 
associated with reactor cooling water inlet temperature. 
The three faults are good representation of overlapping 
data. For each faulty case, two sets of data are gener-
ated; namely: training and testing data. Training data 
is used to build the model and the testing data are used 
to validate the model. The training and testing data 
contain 192 and 110 observations, respectively. Each 
observation includes 30 process monitored states (i.e. 
X1, X2, …, X30). Two variables X7 (parallel flow in the 
first tube metal lump) and X15 (down comer average 
temperature) are clearly affected by faults 1, 2 and 3 
while; the remaining 28 variables are not remarkably af-
fected. The proposed GASVM is simulated and applied 
on different multi-classification methods to estimate 
optimal values of kernel parameters. Using estimated 
optimal values, failure classification is performed on 
the observed data of monitored states X7 and X15 to 
classify faults 1, 2 and 3. 

Results 

The values of kernel parameters were estimated by 
trial and error [1] and were found 10, 2 for c and σ, 
respectively. Values of ROCCs corresponding to es-
timated kernel values are calculated and found 82.29, 
84.50 and 90.63% for one to one, one to all, and one 
to other classification methods, respectively. Proposed 
GASVM scheme is applied to get the optimal kernel 
values that minimize the fitness function. The evolution 
of fitness function for each multi-classification method 
is shown in Figs. 7–9. 

The estimated optimal values of c and σ with the 
corresponding ROCCs for different classification al-
gorithms are listed in Table 4.

Different multi-classification methods are per-
formed on the observed data of monitored states X7 and 
X15 to classify faults 1, 2 and 3. ROCCs based on trial 

Fig. 7. The evolution of fitness function for one to one multi-
-classification. 

Table 3. Description of considered faults in PWRNPP 

Fault Type of fault

Fault 1 Step change in reactivity 20c

Fault 2 Step change in inlet temperature 4°F
Fault 3 Step change in feedwater temperature 10°F

Fig. 8. The evolution of fitness function for one to all multi-
-classification. 

Fig. 9. The evolution of fitness function for one to others 
multi-classification.

Table 4. Optimal values of kernel parameters and corresponding ROCCs 

Multi-classification method
Optimal value of kernel parameter

ROCC values (%)
c σ

One to one 880.9783 1.1045 90.1024
One to all 291.8880 1.1447 91.6667
One to others 789.6410 1.2179 95.5313
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and error kernel values are compared with the GASVM 
optimal estimated values. Remarkable improvements in 
ROCC values are recorded when GASVM is applied. 
Results of comparisons are summarized in Table 5. 

Conclusions 

In this paper the concepts of SVM are reviewed, the use 
of SVM in multi-classification is surveyed, the kernel 
parameters of SVM are optimized using GA with the aim 
of improving ROCCs, and a new GASVM is proposed 
to classify multiple faults in PWRNPP. Simulation of the 
proposed GASVM proves remarkable improvements 
in ROCCs for different multi-classification algorithms 
compared to traditional SVM with trial and error kernel 
values. 
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