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Introduction 

The test particle approach is widely used in fusion 
research to study the transport processes. With this 
method one may evaluate the transport (radial diffu-
sion) coefficients [2, 10, 16], estimate the heat loads on 
different plasma-facing components [20], determine the 
poloidal and toroidal distributions of fast ion losses [8], 
clarify the effect of plasma rotation on plasma confine-
ment [15], study the toroidal field (TF) ripple induced 
transport [4], analyze turbulent transport, when coupled 
with the electromagnetic turbulence code [19], etc. 

In contrast to any analytical theory (such as the 
neoclassical theory or the drift kinetic equation [9]), test 
particle modelling is a direct numerical method to study 
the problems of plasma transport. Thus, no additional 
approximations concerning the Larmor radius of the 
particle, the aspect ratio of the machine, the ratio of 
the poloidal to toroidal components of the magnetic 
field need to be made. In principle, the method may 
be applied in any equilibrium magnetic field with a 
finite TF ripple, with arbitrary plasma density and 
temperature profiles, collisionality regime and other 
characteristics. The price that has to be paid for such 
an intrinsic simplicity is that the test particle modelling 
usually involves lengthy CPU-intensive calculations. 

In this paper we describe a numerical code which 
evaluates the diffusion coefficient of a monoenergetic 
ensemble of test particles in the tokamak geometry. 
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The full orbit integration is accompanied by the Monte 
Carlo collision operator which scatters both the pitch 
and gyro angles of the particle. As an exemplary appli-
cation of this code we discuss how the magnetic islands 
produced by the resonant magnetic perturbation affect 
the collisional transport of impurities. 

Test particle code 

Test particle codes used for the transport studies usu-
ally consist of two basic modules. The first module 
describes the deterministic motion of particles in 
the given magnetic configuration. Usually the particle 
trajectory integration module involves the use of the 
guiding center equations [2, 4, 16]. The effect of par-
ticle gyrorotation is often neglected, which results in a 
substantial reduction of the CPU time needed to trace 
a particle. Unfortunately, for some problems of interest 
this approximation cannot be applied. In such a case 
one has to solve the full orbit equations of motion. Such 
an approach should be used, for example, for studying 
the dynamics of alpha particles and fast ions with large 
Larmor radius [14]; recently this approach had been 
used to investigate the transport problems in spheri-
cal tokamaks [7, 15, 19]. For spherical torii the inverse 
aspect ratio, a/R0 (a – the minor plasma radius, R0 – the 
major radius of the torus) and the poloidal component 
of the magnetic field are no longer small parameters, 
thus the fundamental approximations of the neoclassical 
theory cannot be applied. 

The full orbit equation of motion 

(1)  

is solved in the standard quasi-toroidal system of coordi-
nates (r, θ, φ), where r is the radial coordinate and θ and 
φ are the poloidal and toroidal angles, respectively. The 
equation of motion under the influence of the Lorentz 
force is written in the normalized form for six unknowns 
(three coordinates and three velocity components) in 
a form directly suitable for integration by an explicit 
Runge-Kutta scheme. Results reported in this paper 
were obtained with a standard RK4 method. 

To speed up the calculations it is preferable to use 
an analytic expression for the magnetic field rather than 
the grid data obtained with the equilibrium magnetic 
field code based on the solution of the Grad-Shafranov 
equation (e.g., EFIT). In the present paper a simple 
tokamak magnetic field model is used [6], which gives 
circular magnetic surfaces: 

(2) 

where q(r) is the safety factor and R = R0 + r cosθ. 
The profile of q(r) used in our calculations is shown 
in Fig. 1. 

The second module of the code describes the 
stochastic scattering of test particles due to the Coulomb 
collisions with background plasma particles. Usually 
Monte Carlo equivalent collision operators are used 
to this end, which randomly change the velocity of the 

particle after each time step of the integration proce-
dure. In calculations based on guiding center equations 
it is sufficient to use a collision operator that changes 
the pitch angle of the particle only [2]. However, for the 
full orbit modelling an implementation of the scattering 
of both of the particle pitch angle and the gyrophase 
is needed. A Monte Carlo collision operator suitable 
for exact trajectory integrators was derived by Boozer 
in [1]: 

(3) 
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→
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lar to v
→

0. Here, νd is the collision frequency and Δt is the 
time step used in the code chosen to satisfy νdΔt << 1. 
In contrast to the guiding center Monte Carlo collision 
operator the full orbit operator involves two random 
numbers for each particle at each time step. The sign 
plus or minus in Eq. (3) should be chosen randomly, 
but with equal probabilities. A Monte Carlo operator 
of the form (3) ensures that after sufficiently long time 
particle spends equal time at all values of the pitch and 
gyro angles. An important feature of the operator (3) 
is that it changes only the direction of the velocity, but 
not its magnitude. 

For the field particles with a Maxwellian distribu-
tion the deflection frequency appearing in the collision 
operator is defined as follows [2, 9]: 

(4) 

Here the indices α and β test and background 
plasma particles, respectively. The reference deflection 
frequency in Eq. (4) is given by: 

(5) 

where:                                 is the error function; 

                           is the Chandrasekhar function, 
 
and the argument of the functions in Eq. (4) is the ratio 
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Fig. 1. The safety factor profile, q(r).
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of the test particle velocity to the thermal velocity of the 
background species. If one considers the scattering of 
heavy impurities whose atomic mass is large compared 
with that of bulk ions, then in the limit xα/β << 1 the 
expression for the deflection frequency simplifies to: 

(6) 

For the tungsten ions (W28+) with the energy E = 
1 keV scattered in deuterium plasma (Ti = 3 keV, 
ni = 2.5 × 1013 cm–3), the collision frequency is νd ≈ 
3.4 × 103 s–1. Highly charged impurities are more col-
lisional than bulk plasma particles. 

In order to evaluate the diffusion coefficient the 
full orbit equations of motion for an ensemble of 
N = 1000 monoenergetic particles are solved, applying 
at each time step velocity change according to Eq. (3). 
All particles evolve independently from each other. 
They start their motion from the flux surface where 
q = 2 (r0/a ≈ 0.604). The initial poloidal and toroidal angles 
of each particle are distributed randomly, as well 
as the velocity components. The statistical properties 
of the ensemble are characterized by means of the 
mean-square displacement: 

(7) 

where brackets denote an average over the particles 
in the ensemble. The diffusion coefficient is defined as 
the time derivative of the mean-square displacement: 

(8) 

The temporal dependence of C2 defines the type 
of diffusion. For normal diffusion processes the mean-
-square displacement increases linearly in time. 
Figure 2 shows a typical temporal dependence of the 
mean-square displacement for the ensemble of W28+ 
ions with the energy E = 1 keV. The integration time in 
our simulations is chosen to be 10 collision times, which 
is equal to 3 ms for the considered case. As follows from 
Fig. 2, for time intervals smaller than the mean time 
between the collisions there is a ballistic phase when 

C2(t) varies quadratically in time. Then, the collisional 
effects start to dominate and the normal diffusion is 
observed. The diffusion coefficient is calculated as a 
slope of the curve for the mean-square displacement. 
Fitting the curve by the least-squares method we find 
that the relative accuracy of the D coefficient estimated 
in this way is approximately 10%. The accuracy of D may 
be improved by increasing the number of particles in the 
ensemble; the noise in the curve C2(t) scales inversely 
with the square root of the number of particles [19]. 

The obtained results are in a fair agreement with 
the results of the neoclassical theory [13]. The diffusion 
coefficient has been calculated for several impurity 
species: 

W28+, E = 1 keV,  Dnum = 5.5 × 10–3 m2/s 
  (Dneo = 4.1 × 10–3 m2/s); 
C6+, E = 1 keV, Dnum = 1.3 × 10–2 m2/s 
  (Dneo = 1.2 × 10–3 m2/s); 
W46+,  E = 5 keV, Dnum = 9.9 × 10–3 m2/s 
  (Dneo = 8.8 × 10–3 m2/s). 
For the considered parameters the impurities are in 

the Pfirsch-Schlüter (W28+) or the plateau regime (C6+, 
W46+). The values obtained from numerical calculations 
are somewhat higher than the neoclassical values, espe-
cially for the highly ionized tungsten species. 

Effect of the magnetic islands on the collisional 
transport of impurities 

The full orbit test particle code had been used to study 
the effect of resonant magnetic perturbations (RMP’s) 
on the collisional transport of impurities. RMP’s are 
actively studied in view of the perspective of their use for 
ELM active control and suppression [5, 12]. The additional 
coils producing a perturbation to the equilibrium magnetic 
field are installed on many present-day tokamaks: 
DIII-D, JET, MAST, NSTX, TEXTOR, as well as stellara-
tors. Such a system is also considered for the installation 
at the ITER tokamak [18]. 

In theoretical studies the magnetic field perturba-
tion is usually introduced as follows [3]: 

(9)  δB
→

 = ∇
→

 × (αB
→

0) 

where the scalar function α = α(r,θ,φ) (which has the 
physical dimension of length) defines the structure of 
the perturbed magnetic field. For the present study we 
consider a single harmonic perturbation of the form 
[17]: 

(10) α(r,θ ,φ) = α0e–((r-rres)/Δres)2 sin(mθ – nφ) 

This perturbation produces a chain of m magnetic 
islands with a center at the rational magnetic surface 
(r = rres) where q = m/n. The magnetic perturba-
tion of the form (10) produces only a single chain of 
magnetic islands, avoiding the formation of satellite 
islands. The effect of the island overlapping on the 
diffusion behavior was studied in [17]. In the pres-
ent paper we focus our attention on the effect of the 
m = 2, n = 1 perturbation on the impurity diffusion 
which produces a single chain of two magnetic islands 
in the poloidal cross-section (Fig. 3). 

Fig. 2. A typical temporal dependence of the mean-square 
displacement, C2(t), for the ensemble of N = 1000 W28+ ions 
with the energy E = 1 keV. 
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The radial width of the magnetic islands is controlled by 
the RMP amplitude and is approximately given by [21]: 

(11)  

where the shear dq/dr is evaluated at r = rres. Figure 4 
shows that the perturbation with the normalized ampli-
tude α00/a = 10–4 produces magnetic islands with a width 
~ 10% of the plasma radius. 

Figure 5 presents the time dependence of the mean-
-square displacement for tungsten ions (W28+), for 
different perturbation amplitudes. The lowest curve 
corresponds to the case of the plasma without magnetic 
islands. As expected, an increase in RMP amplitude 
results in greater radial displacements of particle orbits 
and hence bigger diffusion coefficient. The observed 
diffusion is normal in all cases since collisions are rather 
frequent. For the regimes of reduced collisionality the 
radial particle transport under the presence of mag-
netic islands can exhibit sub-diffusive or non-diffusive 
behavior [11, 17]. 

Figure 6 summarizes the obtained results. It shows 
how the diffusion coefficient for the W28+ impurities 
depends on the RMP amplitude. Under the assumption 
that the characteristic radial displacement of the particle 
is simply proportional to the island width the curve in 
Fig. 6 should be linear in α00. However, the observed 
curve shows a more complex quadratic dependence of 
the diffusion coefficient on the RMP amplitude. For the 
case when the island width is 15% of the plasma radius 
the diffusion coefficient for W28+ ions increases by a fac-
tor of 8 with respect to the case without perturbation. 

Summary and conclusions 

A numerical method to evaluate the radial diffusion 
coefficient of test particles in a tokamak geometry is 
described in detail. The Coulomb collisions of test 
particles with the background plasma are modelled by 
means of an equivalent Monte Carlo collision operator 
scattering both the pitch and gyro angles of the par-
ticle. Diffusion coefficients obtained from numerical 
simulation are in a fair agreement with the results of 
the neoclassical theory. It is shown that the impurity 

Fig. 5. The temporal dependence of the mean-square displace-
ment, C2(t), of W28+ ions for different magnetic perturbation 
amplitudes. 

Fig. 3. A Poincaré plot of the perturbed magnetic field (φ = 0). 
A chain of two magnetic islands is created due to the splitting of 
the rational magnetic surface at the point where q = 2. 
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Fig. 4. The radial width of the magnetic islands as a function 
of the RMP amplitude. 

Fig. 6. The diffusion coefficient for W28+ ions as a function of 
the magnetic perturbation amplitude. 
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diffusion coefficient may be significantly enhanced by 
magnetic islands produced by the RMP’s. 
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