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Introduction 

The first attempt to explain the helium incorporation 
in a UO2 crystal was undertaken in the early 1990s [8]. 
The bond energy of helium atoms in the uranium dioxide 
crystal equal to – 0.1 eV was estimated by using the semi-
-empirical inter-atomic potentials and the shell model. 
As the result was negative, so the helium atom could 
be permanently chemically bond in the uranium dioxide 
crystal. However, this result arose doubts because it was 
obtained with not very precise and half-classical methods. 
The later study, using the density functional theory-
-generalized gradient approximations (DFT-GGA) [3] 
framework, did not confirme this result. Conversely, 
the bond energy was calculated to be positive and ac-
cording to the authors it was equal to about +1.3 eV 
[7]. The next attempt to determine the energy using the 
ABINIT [10] program package confirmed the result of 
the semi-empirical inter-atomic potentials method – the 
bond energy was evaluated to be about –0.1 eV. After 
about ten years, counting from the first attempt, the 
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calculation were repeated by Gryaznov et al. [9] us-
ing the “ab initio” method and applying Hubbard’s 
model (DFT+U). They obtained the value for bond 
energy equal to +1.3 eV. Several approximations of the 
exchange-correlation energy functional EXC[n(r

→
)] both 

of the local spin density approximations (LSDA) and 
the generalized gradient approximation (GGA) types 
were used in the calculations what seems to give reliable 
results of bond energies lying in the range from +0.77 
to 1.83 eV, depending on the applied approximation. 

In our previous work [5], considering the noble gases 
Xe and Kr bonding abilities in the uranium dioxide, we 
have assumed that the atoms can occupy oxygen vacan-
cies but not the octahedral interstitial positions since the 
big ionic radii of these atoms practically make it impos-
sible. In the case of helium the situation is different. 

In all the above-mentioned models, the helium 
atom was located in the octahedral interstitial position 
of the uranium dioxide crystallographic lattice what 
is obvious as which ever position would be a worse one in 
terms of total energy consideration. Leaving the results 
unchallenged [9], the goal of this study is twofold. First, 
to describe the chances of formation of the stable local 
helium atom immobilization in the UO2. Second, to 
evaluate the possibility of helium atom to overcome the 
potential barrier between the neighbouring octahedral 
interstitial positions. 

Method of calculations 

“Ab initio” calculations of the electronic structure were 
performed using the Wien2k program package [2] 
based on the DFT. The Kohn-Sham (K-S) total-energy 
functional is used here as follows: 

(1)

Theoretical studies of uranium compounds are 
difficult due to the relativistic character of electron 
motion in the U atom core and the strong electron-
-electron correlation. Chemical bonds of uranium in 
compounds is complex and is characterized by a mixed 
metal-covalent chemical bonding. Taking into consider-
ation the above, in all DFT calculations we use several 
exchange-correlation energy functional EXC[n(r

→
)] both 

within the LSDA and GGA approximations. 
The above potentials are recommended by the 

authors of Wien2K program package [2]. 
All the calculation were performed using the Hub-

bard model (DFT+U), corrective exchange-correlation 
energy functional EXC[n(r

→
)], namely: 

1) PBE+U 
2) WC+U 
3) PBEsol+U 
4) GGA +U 
5) LSDA+U 
6) ABINIT 

For comparison, we used also the ABINIT code re-
sults as was previously used in the calculations of helium 
atom bond energy in UO2 [7]. The ABINIT code utilizes 
the same functional form (Eq. (1)) as the Wien2k code. 
The difference consist in the calculation method of the 
total energy and the electron wave function of atom 
core. In the Wien2k code the electron wave function 
of atom core is calculated in a direct way, while in the 
ABINIT code the participation of the core electrons 
is considered in the form of pseudo-potential which 
is separately. Approximation of interactions between 
core electrons and the valence electrons in the pseudo-
-potential form are not unambigous [11]. In our calcu-
lations we used the Troullier-Martins pseudo-potential 
scheme, which is adapted for plane-wave calculations 
[12]. In both cases the antiferromagnetic electron spin-
-polarization was taken into account. 

Crystal field potential

The fifth term of Eq. (1) describes the dependence of 
the total energy on the nuclei positions. Therefore, per-
forming calculations at different lattice coordinates of 
interstitial helium atom, we can numerically determine 
the potential values of crystal field along the direction of 
neighbour interstitial octahedral positions. UO2 is iso-
morphic, with a face-centered cubic lattice (fcc) of the 
fluorite type structure, with similar lattice parameters: 
a = 5.396 Å [1] and space group Fm-3m (#225). At this 
structure, the neighbour octahedral interstitial positions 
have, for instance, the following crystal coordinates (0, 
0, ½) and (½, ½, ½). Such a potential calculations were 
performed by the usage of Wien2k program package 
for the mentioned above all five exchange-correlation 
energy functional EXC[n(r→)] + U approximations. The 
value of the correlation energy U was fixed at 4.6 eV, 
as suggested in Ref. [9]. Additionally, we used also the 
ABINIT code for comparison. In a view of periodicity 
of the crystal lattice, the calculations were performed 
in the range from (0, 0, ½) to (1/4, 1/4, ½). The calcula-
tion results of the potential appeared, within the error 
limit, to have the same shape irrespective of the applied 
method and the inconsiderable differences refer solely 
to its height. The potential values V(x) of the UO2+He 
arrangement were calculated with the usage of PBE+U, 
LSDA+U potential approximations and using the 
ABINIT pseudo-potential method for comparison [4]. 
In the case of uranium dioxide these approximations 
gave the best results as showed in [4]. All the calculated 
potentials were normalized to unity and are presented 
in Fig. 1. 

By x it is denoted the He current position (x, x, ½) 
during displacement between the neighbour octahedral 
interstitial positions in the range from x = 0 to x = 1/4. 
The potential value presented in Fig. 1 can be approxi-
mated by the Gaussian curve: 

(2)       V = ΔVε0 

where ε0 =             , ΔV – potential barrier height, x – 
current crystal coordinate of helium atom, xc = 0.25, 
w = 0.1468. 
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For small x, better approximation is obtained by 
means of power series: 

(3)    V = ΔV (8.961x2 + 433.68518x4 – 1905.72859x6), 
   x < 0.08 

Collected results of potential barrier height ΔV 
for different EXC potentials are presented in Table 1. The 
divergence of the results for the EXC potentials is not 
big. In further calculations we used the average values 
calculated from the results obtained only by the Wien2k 
code which are assumed to be equal to 8.122 eV. 

Helium atom in the crystal field potential well of UO2 

According to the above calculation results, the helium 
atom located in the octahedral interstitial position ex-
ists in a deep potential well. This suggests hypothesis 
that these helium atoms can form bound states in the 
UO2 crystal lattices. 

The potentials presented in Fig. 1 were computed 
on the assumption that all the atoms in a crystal lattice, 
therein the helium atom, are in the set crystal positions 
and stay all the time there immovably. In the next part 
of our calculations, in reverse, we consider that the 
helium atom is movable and is oscillating around local 
equilibrium positions. 

For the above assumptions, movement of the helium 
atoms can be described with the Schrödinger equation 
in the form: 

(4) 

where: m – mass of helium atom, ΔV – potential (see, 
Eq. (3)), E – helium atom energy. 

To develop the potential ΔV into power series around 
the equilibrium position and neglect all terms above the 
second power, we obtain the well known harmonic oscil-
lator approach. This approach we use to do preliminary 
calculations and afterwards, using the eigenfunction 
base of harmonic oscillator we solve Eq. (4) for real 
potentials ΔV. 

Harmonic oscillator approach 

The potential energy used  in this approach is the fol-
lowing: 

(5) 

where ω is the frequency of harmonic oscillator. 
The Schrödinger equation takes then the form: 

(6) 

Introducing the characteristic length                    , 
the eigenfunction Ψn can be expressed as: 

(7) 

where Hn(x/x0) is the Hermite polynomial of degree n. 
In particular, 

  H0(x) = 1, 
  H1(x) = 2x, 

  H2(x) = 4x2 – 2, 
  H3(x) = 8x3 – 12x, 

Each next polynomial can be obtained, applying the 
recursive formula: 

(9)  Hn+1 = 2xHn – 2nHn–1. 

Each of the quoted eigenfunction Ψn expressed by 
Eq. (7), fulfils the Schrödinger Eq. (6). 

Solving them, depending on the Ψn function form, 
expressed as: 

(10) 

where n = 0, 1, 2,…,n – quantum number. 
Numerical values of a, ω, x0 and E0  for the considered 

cases are presented in Table 2. 
Hamiltonian matrix (6), Hmn = <Ψm|H|Ψn>, for 

any of the functions Ψm for which Ψn is its eigenfunction 

Fig. 1. Crystal field potential ε0 = (E – E0)/(Emax – E0) vs. he-
lium location (x, x, ½) in the UO2 crystal lattice for the range 
from x = 0 to x = 0.25.

Table 1. Different methods of calculating potential barrier heights for helium, eV, which separates the neighbour octahedral 
interstitial positions in the crystal lattice of UO2 

EXC PBE+U LSDA+U WC+U PBEsol+U W91+U ABINIT

ΔUUO2 +He (eV) 8.90 8.32 7.83 7.86 7.71 7.97
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Table 2. Parameters of the Schrödinger equation for the helium potential well in the octahedral interstitial positions of UO2 

<ΔV> (eV) a (eV/Å2) ω (s–1) xo (Å) Eo (eV)

UUO2+He  8.122 1.2498 7.737 × 1013 0.14273 0.0509
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(7), is obviously a diagonal one. As these are stationary 
solutions, this means that if any helium atom is found 
at any particular level n – then it may be there for a 
freely long time. In reality this does not happen because 
of crystal phonons interaction with the helium atom. 
At the temperature equal to absolute zero, only the 
zero level (n = 0) is occupied and the remaining levels 
are empty. As the temperature increases, according 
to the Boltzmann distribution law, the higher levels 
become occupied. These probabilities for 4He atoms 
which are bosons are equal to: 

(11) 

where 

When the temperature is not equal to absolute zero, 
the helium atom can occupy each energy level, but the 
probability of such an event decreases according to 
Eq. (11). The thermodynamic equilibrium wave function 
of helium atoms is not already a pure eigenfunction de-
scribed by Eq. (7), but superposition of these functions. 
In order to accomplish the condition (11) the thermody-
namic equilibrium wave function of helium atom should 
get the form: 

(12)  Ψ
–

equilibrium = pnΨ
–

n 

where pn = √Pn, because then the condition <|Ψequilibrium|2> 
= 1 is accomplished at any temperature. 

Occupation of quantized energy levels of helium in 
UO2 at different temperatures is presented in Fig. 2. We 
can see that even at the temperature equal to 1200 K 
the zero energy level is occupied prevalently (over 
65%), and occupation of the next energy levels strongly 
decreases with quantum number n. 

The solution of Eq. (4) for the real potential V 

The form of the real crystal field potential V is pre-
sented in Fig. 1 and its approximations are expressed 
by the formulas (2), and (3). Solving of Eq. (4) by using 
the Hermite polynomials, leads to the Hamiltonian 
matrix Hmn = <Ψm|H|Ψn>, which is no longer diagonal 

and the formerly found states are not stationary. Using 
the numeric diagonalization methods and using the 
same Hermite polynomials as basic functions, we can 
find stationary values and eigenvectors of this system. 
In our case we applied the Jacobi numerical methods. 
The calculated values of energy levels for UO2 in com-
parison with the values obtained according to Eq. (10), 
are presented in Fig. 3. 

Helium atoms during thermal oscillation deviate from 
their equilibrium positions. The higher is the temperature 
the bigger is the deviation. The mean square deviation 
of helium atom vs. temperature for UO2 is presented 
in Fig. 4. 

As it is seen, the deviations are small and, even at 
very high temperatures, for instance at about 1200 K, 
they are below 4% of the lattice constant a0. 

At the end of this section, it should be mentioned, 
that the harmonic oscillator approach with the param-
eters obtained as a result of neglecting all the higher 
terms above the second power of the potential V is 
not the best one from the standpoint of the diagonal-
ization. The result can be more quickly obtained by 
applying the potential in the parabola form what is 
presented in Fig. 5. Application of such a potential 
enables to obtain significantly smaller not diagonal 

Fig. 2. Energy level occupation probability of helium in UO2 
vs. quantum number at different temperatures. 

Fig. 3. Energy levels of helium atom in UO2 vs. quantum 
number. 1 – Calculated according to Eq. (10); 2 – obtained 
in the result of diagonalization. 

Fig. 4. The mean square deviation of helium atom vs. tempera-
ture for UO2. 1 – Calculated according to harmonic oscillator 
approach; 2 – obtained in the result of diagonalization. 
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terms Hmn = <Ψm|H|Ψn>, what, in turn, reduces the 
number of iterations and in the consequence the time, 
during diagonalization process. Obviously, the choice of 
potential, and so the choice of basis functions, does not 
affect in the slightest way the final result, calculated for 
the real potentials V(x). 

Over-barrier jump of helium atoms by crystal field 
potential barrier of UO2 

The wave functions of helium atom Ψequilibrium(x), de-
scribed by Eq. (12), also after diagonalization contain 
the exponential factor and rapidly decline with distance. 
Nevertheless, although to some small extent, the waves 
penetrate beyond the potential barrier and this means 
that the helium atom can be found on the other side 
of the barrier. 

Let us consider the two-site model, consisting si-
multaneously of occupied (region I) and not occupied 
adjacent octahedral interstitial positions (region II). We 
believe therefore, that the helium atom has available 
energy levels of the two octahedral interstitial positions, 
but it occupies one of them. The potentials of the two 
positions, their parabola approximations and the first 
four graphs of wave functions Ψn(x), localized in the two 
positions are illustrated symbolically in Fig. 5. There 
are also symbolically marked energy levels in both 
the regions. We see, as already confirmed earlier, the 
mean square deviations that the shown wave functions 
are concentrated on small distances from the positions 
of equilibrium. Below, we assess the time required for 
over-barrier jump in function of temperature. 

If the helium atom occupies a certain energy level 
in the octahedral interstitial position I (see Fig. 5), 
then its state describes the wave function ΨI

equilibrium(x). 
If, on the contrary, the octahedral interstitial position 
II is occupied, and the position I is empty – we have an 
analogous situation; the arrangement is in the quantum 
state ΨII

equilibrium(x). The wave functions of such an ar-
rangement are analogous, but located in the second po-
sition, what is symbolized by the index II. However, the 

matrix elements, containing the functions Ψequilibrium(x) 
from different regions are different from zero: 

(13) 

The matrix elements, containing the functions 
Ψequilibrium(x) from the same regions are: 

(14) 

According to the general principals of quantum me-
chanics, the amplitude of Ci states, which previously were 
constants, begin to depend on time. This is described by 
the linear system of differential equations [6]: 

(15)  

where C1, C2 are the state amplitudes ΨI
equilibrium(x) and 

ΨII
equilibrium(x), respectively. 
Once summing up and once subtracting the sides of 

the above differential equations we get two separated, 
easy to solve differential equations. Omitting the techni-
cal details, we obtain finally: 

(16) 

The amplitude C1 decreases with time as a co-
sine function and reaches the value of zero after
                       while C2 increases as a sine function and 
reaches the value of 1 for the same time t. In other 
words the helium atom moved from the region I to 
region II after time t. Results of numerical calculations 
are presented in Fig. 6. 

The results of calculations presented in Fig. 6 show 
that the diffusion of helium in UO2 is impossible even 
at high temperatures as high as 1200 K. The time that 
must elapse for the helium atom to over-barrier jump 
from one to the neighbouring octahedral interstitial 
position, distant only about 3.9 Å, at a temperature of 
1200 K is about 1028. They are unimaginably long times, 

Fig. 5. Two-site model schema. EI
n, En

II – energy levels in the 
regions I and II, respectively; Ψ0–3 first four graphs of wave 
functions Ψn(x), localized in the I and II positions; 1, 2, 3 – pa-
rabola approximations and optimal parabola approximations 
of potential U(x), respectively.

Fig. 6. Over-barrier jump time of helium atom in UO2 in func-
tion of temperature. 1 – Parabola approximations of potential 
ΔV; 2 – real potential ΔV. 
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and virtually exclude the possibility of helium diffusion 
in these compounds. 

Penetration of helium atoms by the crystal field 
potential barrier of UO2 depending on the height 
of the barrier 

The results of our previous calculations show that even 
small changes of the potential in UO2 lead to large 
changes in the probability of over-barrier jump. There-
fore, we decided to check if any, unavoidable errors 
when calculating the potential parameters using the 
“ab initio” cannot traverse the results obtained above. 
We analyzed this problem and the calculation results 
are presented in Fig. 7. During the calculations, we 
kept the same as before the width of the barrier. If it is 
assumed as a criterion, the time of over-barrier jump to 
neighbour interstitial position, distance of about 3.9 Å, 
as one year, (dotted line in Fig. 7), the diffusion time in 
the crystal at a distance of the order of centimeters will 
require about 108 years. 

The criterion is fulfilled even at a temperature of 
1200 K for UO2 at ΔV larger than 3.4 eV. At 300 K, this 
limit shifts to 1.3. Therefore, it does not seem likely 
that our estimated values of barrier heights at 8 eV is 
below this criterion. 

Discussion 

The hitherto existing research described in the open 
literature, on bonding the helium atoms in UO2 crystals 
by the “ab initio” method relied on the incorporation 
energy calculations. This of course makes a crucial 
sense for bonding the helium atoms which are solely 
very close to the crystal surface. Whereas in the case 
when the helium atom occupies already the octahedral 
interstitial position, in order to get out of the crystal the 
atom has to make many over-barrier jumps what prac-
tically is impossible, as show our evaluations. Merely, 
the value and sign of the incorporation energy for the 
helium atom, being inside the crystal, virtually does not 
apply to explain the problem of He immobilization in 
the crystal. Helium atoms resulting from the radioactive 
decay as α-particles have the energy thousands of times 
greater than the 8 electronvolt barrier and can easily 

move in the crystal occupying free octahedral interstitial 
positions. The old mineral materials containing fissile 
isotopes hold fairly a lot of noble gases. 

The accuracy of numerical calculations remains to be 
discussed. Incorporation energy calculations presented 
in paper [9] which were done with methods similar to 
ours, show a divergence of +1.83 to +0.77 eV, that is 
about ±0.5 eV, and the divergence of the most utmost 
results, obtained in papers [3, 7, 8] do not exceed 
±1 eV. Since the potential barrier values obtained by 
us are equal to about 8 eV, therefore even two times of 
overestimation of the barrier does not change the main 
conclusion that the diffusion process of helium cannot 
be observed even at very high temperatures of 1200 K 
what is an analogical conclusion presented in Ref. [8]. 
However, authors [8] evaluated the barrier height at 
about 3.8 eV and they also considered that the barrier 
significantly reduces the helium atom diffusion in the 
not defected UO2 single crystal. 

Conclusions 

Helium atom located in the octahedral interstitial po-
sition of crystal lattice fcc UO2 is submitted to strong 
repulsive forces from the surrounding metal and oxygen 
atoms, which means that it is in a deep potential well 
of a depth equal to 8 eV, preventing it from any movement 
in the crystals even at very high temperatures reaching 
even thousands of K. Thus, the octahedral interstitial 
positions in uranium dioxide are effective traps for helium 
atoms. The helium trapped there is immobilized and may 
stay in the crystal for an arbitrarily long time. This is sup-
ported by some old minerals, where alpha decay occurs, 
such as uraninite which holds fairly a lot of helium during 
hundreds of millions of years and which could exist in 
a certain geological period where the temperature was 
very high. 

The α-particles occurring during radioactive decay 
have a large enough energy to penetrate the crystal and 
to occupy the octahedral interstitial positions – incor-
poration process into the crystals. 

Shape of the potential barrier is close to the Gaussian 
curve and its height is equal to 8.122 eV for UO2 with its 
width about 1.120 Å. 

Quantum-mechanical analysis showed that helium 
atoms in a crystal form local, stable in time and bound 
states performing small oscillations around the equi-
librium position. 
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