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Introduction 

The determination of the void fraction and flow regime 
in a two-phase mixture is of great importance in a variety 
of engineering application. It is essential to monitor flow 
regimes for the purpose of enhancing safety and overall 
performance in industrial systems such as nuclear re-
actors, petroleum and biomedical processing systems. 
Many researchers have been working on developing 
objective methodologies for flow regime identification. 
Hewitt [6] and Lahey and Banerjee [8] have reviewed 
various methods for measuring void fraction. Among 
them the radiation attenuation method as gamma-
-densitometry is a non-intrusive technique. 

Measurement of the void fraction, i.e. the gas frac-
tion, with traditional gamma-ray densitometers consist 
of a single source with one detector installed diametri-
cally opposite it, are strongly dependent on the flow 
regime. Dependence on particular type of flow regime 
is significantly reduced by using multi-beam low-energy 
gamma-ray measurement principle [1]. 

Several beams from one low-energy source were 
used in our study; 241Am with 59.5 keV gamma-ray 
emission. When gamma-ray photons pass through 
matter, they interact mainly through the photoelectric 
effect, Compton scattering and pair production [12]. 
The photoelectric effect and Compton scattering are 
the dominant interaction mechanisms for low-energy 
photons. Photoelectric interaction probability is pro-
portional to the atomic number to the power of 4–5. 
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The probability of a Compton interaction with an 
electron decreases with increasing photon energy and 
is independent of the atomic number of the interacting 
material and mainly depends on the electron density 
per unit mass [4]. 

Photon scattering is often regarded as an unwanted 
effect in gamma-ray transmission measurements, since it 
complicates the interpretation of the results. Build-up, i.e. 
the extra contribution to the measured transmission in-
tensity from scattered radiation, has to be accounted for, 
particularly if wide-beam measurement configurations 
are used. In fluid flow fraction measurements, however, 
it is possible to take advantage of this effect since it ef-
fectively means that the gas-liquid distribution outside of 
the actual measurement volume affects the result [1]. 

For further analysis of the gamma-ray spectra, arti-
ficial neural networks were used, which are known to 
be applicable to the recognition and classification of a 
wide range of situations, patterns and individual features 
of different systems. Neural networks were trained on 
the simulated gamma-ray data and then used to ana-
lyze the measured spectra. This analysis enabled us to 
determine the void fraction with high accuracy for all 
the flow regimes and the flow regimes in the data set 
will be identified. 

Simulation models 

In two-component flows in which the components have 
sufficiently different densities, gamma densitometers 
can be used to measure the volume fractions, e.g. the 
gas fraction of the flow components. The void fraction 
is defined as the gas volume fraction divided by total 
volume of the flow as follows: 

(1)  
 

where V is the total volume of the flow and Vg , Vl are 
the volume of gas and liquid, respectively. 

Three basic flow regimes were simulated: Bubbly, 
Annular and Droplet flows. It was necessary to develop a 
model for each type of flow regime because of the differ-
ence in geometry. Each model includes a variable, which 

allows the void fraction to be varied from 0 to 100%. 
In all flow regimes two cylinders defined the pipelines. 
The pipe wall material is aluminum and the inner and 
outer diameters of the pipe are 80 and 90 mm, respec-
tively. In addition, cylinders were used to define the con-
figuration of the detectors. Only idealized flow regimes 
have been considered in this paper in order to simplify 
the calculations. The Bubbly two-phase flow pattern 
appears to exit over a wide range of gas and liquid flow 
rates. Two-phase Bubbly flow is commonly defined as a 
flow pattern in which the dispersed gas bubbles spread in 
a continuum liquid with the bubble size smaller than 
the pipe diameter [2]. In ideal Bubbly flows spheres 
were used to define the bubbles so that the number of 
the bubbles could be altered. Generally, Annular flow 
can be viewed as separated flow when gas flow is not 
too fast. The major characteristic of Annular flow is the 
liquid film thickness that can be easily calculated from 
the void fraction [7]. For ideal Annular flows, a single 
cylinder was used to define the gas interface so that the 
dimension of the gas core could be changed. Spheres 
were used to define the liquid droplets in droplet flows 
so that the number of the liquid droplets could be chosen 
in order to define the void fraction. These flow regimes 
are shown in Fig. 1. 

A 14 mCi 241Am (59.5 keV) source and four CZT 
(CdZnTe) semiconductor detectors were used around 
the pipe at 180°, 140°, 68° and 52° with respect to the 
source position at 0° on the periphery of a given cross 
sectional area. The circular CZT detectors were of 
diameter 0.34 cm and the thickness of 2 mm. 

Because of the large band gap of the CZT detectors, 
it can be operated at room temperature. As a result, the 
detector does not need to be cooled by liquid nitrogen 
during measurement. It means a spectroscopy system 
with a CZT detector is relatively compact. A CZT crystal 
in the detector has a density of 5.86 g/cm3 and atomic 
percentage of 45.0% (Cd), 5.0% (Zn), and 50.0% (Te), 
respectively. 

Artificial neural networks (ANNs) 

ANNs are one of the most accurate and widely used 
nonlinear modeling tools. An ANN is a computational 
mechanism capable of representing continues mapping 
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Fig. 1. Three different geometries due to Bubbly (a), Annular (b) and Droplet (c) flow regimes. The marginal grey rectangular 
boxes are detectors and the black rectangular box is a source. 
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from one multidimensional space of data to another 
by a set of given data representing that mapping. The 
ANNs are mathematical models that emulate some of 
the observed properties of biological nervous systems 
and draw on the analogies of adaptive biological learn-
ing [11]. The network is a structure of interconnected 
computational units which are called neurons, acting 
independently and simultaneously. The processing 
capability of the network is usually stored in inter-
connection strengths called synaptic weights.

There are many ANN architecture each of them is 
suitable for a special type of problems. In most ANN mod-
eling cases, such as this work, a very basic ANN model 
known as the multilayer perceptron (MLP) network is ap-
plied. MLPs consist of collection of simple processor units 
called neurons arranged in some layers. The neurons in 
one layer are fully connected to the neurons of next layer 
through weighted connections. In other words, outputs 
of neurons in one layer are inputs of neurons in the next 
layer. A neuron typically performs a nonlinear weighted 
sum of its inputs. Then, the result is passed through a 
transfer function to produce single output. 

In a three-layer MLP, the neuron outputs of the first 
layer feed hidden layer neurons and the latest neurons 
feed neurons of the last layer. A one hidden layer ANN 
can model any nonlinear mapping with a finite number 
of discontinuities to any arbitrary level of accuracy if a 
sufficient number of neurons are assigned to its hidden 
layer. The number of hidden layers and the number 
of neurons in each hidden layer determine the capac-
ity of the network, being usually determined through 
experimentation. 

In the MLPs, at first, weights are randomly selected, 
and finally they can be determined adaptively by many 
supervised learning algorithms. One of the best of them 
is backpropagation algorithm. The learning algorithm 
adjusts weights and biases to handle a given example 
input/output data [5]. In fact, training minimizes the 
quadratic error between the network output and 
the desired output. With this approach, most of the com-
putation effort is expended during the training process. 
Once trained, the operation of an MLP is accomplished 
through vector-matrix multiplication and application of 
nonlinear functions resulting in its fast operation. If a 
further speed increase is necessary, a trained MLP can 
be implemented in some of the most basic hardware 
digital signal processors (DSPs). 

Generation of simulated data 

MCNP is a general-purpose, continuous-energy, gen-
eralized-geometry, time-dependent, coupled n-particle, 
neutron, photon and electron, Monte Carlo (MC) trans-
port code [3]. A system is defined by generating cells 
bounded by surfaces in three dimensions (3-D). Any 
kind of geometry can be defined as a cell and this cells 
can be rotated and moved to anywhere in the space. 

The MC simulation models have been devel-
oped and implemented in order to study transmitted 
and scattered photons over the pipe cross-section [1]. 
Measuring the spectral detector response at several 
positions around the pipe allows the transmitted and 
scattered photons to be detected in several positions. 

Pulse height analysis is used to study the energy deposi-
tions in the detectors. Once the detector responses have 
been combined and utilized, the void fraction and flow 
regime can be determined. 

Figure 2 shows the spectra of different flow regimes 
at detector positions of 180°, 140°, 68° and 52° simulated 
with MCNP code when the void fraction alters from 0 
to 100%. The collimated beam covered angles from 
180° to 140°. Outside the beam the number of detected 
photons was smaller but not negligible. Only scatter 
photons are in these positions. Due to the different 
geometries of the flow regimes, the energy distribution 
of scattered photons reaching the detectors may differ 
between flow regimes. Thus, the spectra of detectors 
contain information about the flow regime. 

ANN based modeling 

In this non-invasive void fraction measuring system, 
there is one to one mapping between every void fraction 
in a special regime type and the obtained corresponding 
spectra. There are some clear peaks in the spectra: for 
detectors at 180° and 140°, the two peaks of 50 and 
59.5 keV are selected as network inputs and for other 
detectors laying outside of beam collimation, the peak 
of 50 keV is chosen. These energies can be seen in 
Fig. 2. The counts of these energies and summation of 
counts of all energies (total count) of the spectra at the 
four detectors at every void fraction in every regime 
are selected as the input of the network. 

Void fraction values and a number of regime types 
are considered as network outputs. Two separated 
ANNs with the same structure and same input are used, 
the first for void fraction prediction and the second 
for regime type classification. The output of the first 
network determines the void fraction and output of 
the second network determines the regime type. The 
structure of the MLP network consists of one 7 neurons 
input layer and one hidden layer with 20 neurons and 
one output layer with 1 neuron. All network inputs 
except the last one receive the counts of the peaks. 
The last input receives the summation of counts of 
40 to 59.5 keV at the detectors; i.e. summation of the 
total count of the four detectors. Transfer functions of 
neurons are hyperbolic tangent sigmoid in the hidden 
layer and linear in the output layer. 

Learning algorithm in this work is the Levenberg-
-Marquardt backpropagation [9, 10]. This fast iterative 
algorithm is based on gradient descent and it can reduce 
network error function by modifying the weights and 
biases in each iteration or epoch. Training and testing are 
done using the MATLAB Neural Network Toolbox. 

Various void fraction MCNP simulations in different 
regimes, provide 117 data. But there are a few repetitive 
data. There is no difference between 3 simulated spectra 
corresponding to 0% void fraction in every regime and 
for the 100% is the same. In these cases various regime 
types are meaningless. Therefore, there are 4 repetitive 
data in these 6 mentioned cases which should be elimi-
nated. They change the one to one mapping to another 
and in this condition a neural network cannot model it. 
After elimination of these repetitive data, 90 data were 
used as training data and 20 data were used as testing 
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and the remaining were used for validation. The root 
mean square error (RMSE) is used for representing test 
data error. The RMSE of normalized test data for void 
fraction predicting is 0.0254. The predicted void fraction 
vs. the observed test data is shown in Fig. 3. 

Another network that is used for classification of 
flow regime type has three output values 1, 2 and 3. 
These numbers specify Annular, Bubbly and Droplet 
flow regimes, respectively. But actual outputs of the 
network are not integer and should be rounded and then 
compared to the test data. The predicted flow regime 

vs. the observed test data is shown in Fig. 4. The result 
shows no error and all regime types of test data can be 
classified exactly. 

Conclusions 

The attenuation of 59.5 keV gamma-ray from 241Am 
through the two-phase flow was measured by using CZT 
detector simulations. Several simulations are performed 
around the pipe on the same cross-section. Different 

Fig. 3. Test data for void fraction. Fig. 4. Test data for flow regime. 

Fig. 2. Normalized spectra of various void fractions in various flow regimes at 40–60 keV energies. Reference of normalization 
was the highest spectrum (a). Black, grey and light grey graph are due to Annular, Bubbly and Droplet flow regimes. Detectors 
placed at 180° (a), 140° (b), 68° (c) and 52° (d) positions toward a source. 
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spectra resultants from various flow regimes were calcu-
lated. Then, the simulated data were used as a training 
set for NNs. With responses from detectors, the average 
error in determination of the void fraction was 2.54%. 
All flow regimes were exactly identified. For vertical 
two-phase flows, it has been shown that neural net-
works are appropriate classifiers of flow regimes. This 
is especially useful when pipe lines are opaque. Thus, 
simulated data from the models appear to be suitable 
for training NNs. Results show that neural networks, 
in general, may be a promising tool for interpretation 
and analysis of two-phase flow data. 
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