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Introduction 

A heavy charged particle (HCP) passing through matter 
undergoes interactions with the medium by depositing 
energy through atomic excitations and ionizations. 
In the latter case secondary charged particles, mainly 
electrons, are produced. These secondary particles me-
diate the transfer of energy of the primary particle. The 
HCP creates a trail of local energy deposition events 
which is referred to as the radial distribution of dose. 

The radial distribution of dose, D(r), is one of the 
fundamental concepts used to describe tracks of heavy 
charged particles. It is also applied in several radiobio-
logical models of cell survival [4, 12]. Until now, models 
based on the D(r) concept were mainly used to predict 
biological effects and the response of physical detec-
tors after heavy ion irradiation. Most of the analytical 
formulations of D(r) show that at radial distances below 
1 nm from the path of the heavy ion track, the local 
dose can reach values as high as 106 Gy [13, 14], but this 
has never been verified experimentally. Furthermore, 
thermoluminescent (TL) detectors have never been 
used for this purpose, because the γ-ray dose response 
of most TL detectors typically saturates around 103 Gy. 
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Abstract. In track structure theory, the radial distribution of dose, D(r), around an ion track plays a fundamental role 
in predicting the response of biological systems and physical detectors after a dose (or fluence) of ions. According to 
the formulations of D(r), the local dose at radial distances below 1 nm can reach values as high as 106 Gy. We propose 
a new method of verifying experimentally the radial dose distribution around α-particle tracks, using LiF:Mg,Cu,P 
(MCP-N) thermoluminescent detectors (TLD) which are able to measure γ-ray doses in the kGy range via evaluation of 
their high-temperature TL glow peak structure over the temperature range of 350–550°C. MCP-N detectors were irradi-
ated with Am-241 α-particles at fluences ranging from 107 to 1011 particles/cm2, and by Co-60 γ-ray doses ranging from 
several Gy up to the MGy. A number N of individual high-temperature TL peaks were analysed in the obtained glow 
curves by deconvolution, using the GlowFit code. For each of these peaks, an equation relating the intensity, A, of the 
TL signal obtained after α-particle irradiation and after γ-ray doses, via the dose-frequency function, fα(D), was written 
in the form:                               . Using this set of N equations, where Aα

i and Aγ
i(D) were known 

(measured), the single unknown function fα(D) was unfolded and converted to D(r). Parametric unfolding and the 
SAND-II iterative code were applied. While we were able to confirm the 1/r2 dependence of D(r) in agreement with 
D(r) expressions, we were unable to conclusively evaluate the dependence of D(r) at intermediate ranges of radial dis-
tance r. This preliminary result of our unique experimental approach to determine the radial dose distribution around 
the path of heavy charged particles in LiF detectors, requires further development. 
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However, noting the high-temperature structure of TL 
glow curves of MCP detectors, observed by Bilski et al. 
in 2008 [1], we wished to explore the possibility of using 
these detectors to verify the analytical D(r) formulae 
over the whole range of doses and radial distances. 

The high-sensitive MCP-N-type TL detectors are 
based on lithium fluoride doped by magnesium, copper 
and phosphorus (LiF:Mg,Cu,P). MCP-N detectors can 
be used to measure doses of ionizing radiation rang-
ing from a few microgray (μGy) up to at about 1 kGy 
where response saturation occurs. Over this dose range, 
the response of MCP-N is quite linear, and in its glow 
curve the shape of the main dosimetric peak, with its 
maximum around 220°C, remains practically unchanged 
[9]. After exposure to very high doses of γ-radiation 
above about 1 kGy up to 1 MGy, a high temperature 
glow peak structure appears [1, 8]. For doses up to 
about 50 kGy, the structure occurs predominantly 
at temperatures between 250°C and 450°C. For doses 
up to 1 MGy, the peak structure continues to grow and 
gradually shifts towards higher temperatures, up to 500°C. 
TL glow curves of MCP-N detectors after irradiation with 
Co-60 γ-ray doses of 0.5, 5, 50 and 500 kGy, as measured 
by Obryk [7], are plotted in Fig. 1. For the purpose of 
this work, it should be noted that MCP-N detectors are 
known to measure doses of α-particles with low efficiency, 
typically 0.04–0.06, relative to γ-ray doses [3]. 

In this work we make an attempt to link the ex-
perimental data from irradiations of MCP-N detectors 
with Co-60 γ-rays and Am-241 α-particles over a wide 
range of doses and fluences, to propose an innovative 
method of exploiting the high-dose range capability 
of the MCP-N detector to verify experimentally the 
expressions describing the radial dose distribution, 
D(r). To our knowledge, this is the first attempt at such 
a verification of D(r) formulae in solid-state LiF-based 
TL detectors. 

Materials and methods 

The approach 

It is assumed that the TL glow curve of MCP-N detec-
tors after a dose D of γ-rays, I γ(D), can be deconvoluted 
into N individual peaks i = 1,…, N: 

(1)  

where Ai
γ(D) is the γ-ray dose (D)-dependent peak am-

plitude and Ii
γ is the TL peak of unit amplitude described 

by the first-order kinetics. It is also assumed that the 
TL glow curve, Iα(F), after α-particle irradiation, can 
be deconvoluted using the same set of individual peaks 
as for γ-rays: 

(2) 

differing only in their amplitudes, Ai (Fig. 3). Then: 

(3) 

where F is the fluence of α-particles. If F is small enough 
for the probability of overlapping of α-particle tracks to 
be negligible (is close to zero), then the peak amplitude 
is proportional to F. 

(4) 

where c is the proportionality constant. The dose dis-
tribution in the α-particle track is strongly non-uniform 
and the local dose (point dose) can vary significantly, 
(see equations of radial dose distribution by Katz [4], 
Waligórski et al. [13] or Zhang et al. [14]), from Dmin to 
Dmax, even reaching doses of MGy range. The response 
of the detector, irradiated with α-particles, Ai

α is equal 
to the integrated response of the detector (as a func-
tion of dose), measured for the irradiation with γ-rays, 
Ai

γ(D) weighted over a dose frequency distribution 
function, fα(D). 

(5) 

where f α(D) is the frequency distribution of dose D 
within a single track of an α-particle. Having meas-
ured Ai

α and Ai
γ(D) the fα(D) function can be unfolded 

and later converted to the radial dose distribution D(r), 
using the following formula: 

(6) 

The radial dose distribution D(r) is defined as a 
point dose D at the radial distance r from the track 
axis. It is assumed here that ion paths are straight lines. 
Dmax is defined for r = 0, while Dmin corresponds to the 
maximum range of δ-rays, rδ, as shown in Fig. 2 rδ is a 
function of the α-particle energy, since the α-particle 

Fig. 1. Non-normalized TL glow curves of MCP-N detectors 
after irradiation with doses of Co-60 γ-rays. 
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Fig. 2. Track structure of a heavy charged particle.
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slows down along its path in the detector. Therefore, in 
order to use Eq. (6) to calculate the D(r) distribution, 
additional integration over the energy of the α-particle 
is required. Since such calculations are complicated, 
as a result of this work the fα(D) function, evaluated 
from Eq. (5) and the corresponding function resulting 
from model calculations, using a given D(r) formula, 
will be compared. 

Unfolding methods 

Since a finite number of discrete observables, Ai
α can-

not, in general, define a continuous function f α(D), 
such a system of equations is, in most cases, undefined 
and does not have a unique solution. Therefore, in the 
unfolding procedure to yield fα(D), some additional as-
sumptions as to the expected response function should 
be applied, e.g. non-negativity, continuity, smoothness, 
monotonicity, etc. As the values of Ai

α are known with a 
certain experimental error, δAi

α Eq. (5) can be rewritten 
in the following form: 

(7) 

Due to the above-mentioned assumptions on the 
behaviour of the function fα(D), the system can become 
overdeterminated which justifies looking for approxi-
mate solutions, e.g. in the least squares sense. 

The quality of the unfolded function can be verified 
by introducing additional criteria. Let us assume that 
Aα

calc is the effect calculated for a particular response 
function. Minimizing the following quantity: 

(8) 

can constitute a criterion for finding the best matching 
function. 

Unfolding with discrete intervals 

There is a broad group of numerical methods that can 
be used to evaluate the fα(D) function from Eq. (7). 
Here, two methods are of particular interest. 

In the least squares method, requiring matrix inver-
sion, the response function is determined by solving 
Eq. (7) in the least square sense. This procedure can 
be continued iteratively until a satisfactory solution 
is obtained. The advantage of this method is that the 
covariance matrix corresponding to the unfolded func-
tion gives some information on the error involved. This 
method, however, does not exclude negative solutions 
and tends to oscillate. Therefore, for practical calcula-
tions, some additional assumptions such as smoothness, 
non-negativity, etc. need to be used. 

In iterative methods, a starting function, f 0, is itera-
tively modified until an acceptable fitting error is reached. 
The most widely used computer code for iterative unfold-
ing is SAND-II [6]. The deconvolution process starts by 
setting up an initial function, f 0. With this function effects 
A0

α are calculated and compared with experimental val-
ues. If the quality of the fit (Eq. (8)) is not good enough 
then the initial function must be corrected. The iteration 

process stops if the assumed condition is fulfilled or if the 
number of iterations exceeds a fixed limit. 

The disadvantage of the discrete interval method 
is in its difficult error analysis. The number of modalities 
used to investigate a given end-point does not usually ex-
ceed 10 and is much smaller than the number of discrete 
intervals (typically chosen between 10 and 20 per de-
cade). Equation (7) is therefore undefined and does not 
have a unique solution. Therefore, significance analysis 
can be performed only with some prior knowledge. Even 
if the error band of the unfolded function is known, the 
quantitative comparison of two solutions depends on 
initial guesses, types of regularizations, etc. 

Radial dose distribution 

For the purpose of this study, the Geiss formula for 
the radial distribution of dose [2] has been chosen as a 
guess function in the unfolding procedure. Geiss’s D(r) 
formula is based on a parameterization of the Monte 
Carlo calculations, performed by Krämer et al. [5]. 
The model assumes that in the area of the “core” of 
heavy charged particles, i.e. at radial distances, r, below 
0.1 nm from ion’s path, the dose has a constant value, 
C. The second assumption is that the range of delta 
electrons, rδ, is proportional to their energy, to the power 
3/2. The analytical representation of Geiss formula and 
the energy-range relationship for delta-ray electrons 
are as follows: 

(9) 

The value of the constant C (which is 4.72 Gy for 
4.8 MeV α-particles) is determined from normaliza-
tion of the distribution to the particles’ total stopping 
power value: 

(10) 

where ρ is the density of the medium (LiF). 

Irradiation and read-out 

All measurements for this study were performed using 
MCP-N (LiF:Mg,Cu,P) TL detectors, produced at the 
Henryk Niewodniczański Institute of Nuclear Physics, 
Polish Academy of Sciences (IFJ PAN, Kraków, Poland). 
Data from earlier irradiations [7] with Co-60 γ-rays in 
the dose range from 0.5 to 1000 kGy, at the KAERI 
(South Korea) and Co-60 γ-rays in the dose range from 
1 to 300 kGy, at the TU, Delft (Netherlands) were 
used. Irradiation with α-particles was performed using 
an Am-241 source of surface fluence rate 1.71 × 104 
particles⋅cm–2⋅s–1, as verified with CR-39 track-etched 
detectors in measurements performed at the IFJ PAN. 

The MCP-N detectors were 4.5 mm in diameter, 
0.9 mm thickness and the entire detector surface (from 
one side) was uniformly irradiated by α-particles. The 
irradiation time varied from 1.2 × 102 s to 5.2 × 106 s, 
which led to fluences ranging from 2 × 106 to 8.9 × 1010 
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particles⋅cm–2 (i.e. average doses from about 0.3 Gy to 
about 15 kGy in the irradiated volume – a layer of 
18.54 μm thickness). 

Read-out was performed using a RA’94 manual 
TLD reader with a platinum heater, a bialkali photo-
multiplier tube and a BG12 filter, at a heating rate of 
2°C per second up to 550°C. In all measurements the 
volumetric flow rate of argon was about 40 l/h. All ex-
periments were performed using virgin detectors and 
after their read-out to 550°C the detectors were no 
longer used. All TL glow curves were deconvoluted into 
N single peaks using the GlowFit code [11], assuming 
first-order kinetics. 

Results and discussion 

It was assumed that in the read-out TL glow curves of 
MCP-N detectors irradiated by α-particles and by γ-rays 
same individual peaks were observed, differing only in 
amplitude, as shown in Fig. 3. All measured TL glow 
curves were normalised to read-out at the temperature 
of 220°C and deconvoluted into individual peaks using 
the GlowFit code [11]. The results of deconvolution 
of all TL glow curves, after irradiation with γ-rays, Ai

γ(D) 
are presented in Fig. 4. 

To avoid the effect of overlapping α-particle tracks 
[10], deconvolution was performed for TL glow curves 
obtained after the fluence of 5.9 × 109 α-particles/cm2. 
The measured values of Ai

γ(D) and Ai
α were used as 

input data for the unfolding code. 
Application of the iterative unfolding method re-

quires a prior knowledge of the guess function. For the 
monoenergetic α-particles, the fα(D) is related to D(r) 
as follows (see Appendix): 

(11)  

The f α(D) function for slowed-down α-particles 
was calculated numerically from the initial energy of 
4.8 MeV. The non-normalized f α(D) function, used 
as the initial guess function for the iterative unfold-
ing procedure, is shown in Fig. 5. As described above, 
the iterative unfolding algorithm was applied to solve 
Eq. (7). Calculations involved 10 runs and 1000 itera-
tions per each run (values set arbitrarily). For each run, 
the values of Ai

α were randomized from a Gaussian 
distribution with an average value, μ, equal to Ai

α and 
a standard deviation value, σ, equal to δAi

α 0.5δAi
α  

and 0.33 δAi
α. The best result was obtained for the pa-

rameter σ = δAi
α and this result is presented in Fig. 5 

Fig. 3. Comparison of deconvolution results of MCP-N TL glow curves after irradiation with γ-rays (panel A) and α-particles 
(panel B). High local doses, within a single α-particle track, cause the appearance of high-temperature peaks, characteristic 
of doses exceeding 100 kGy of γ-rays. 

Fig. 4. Dose-response dependence of TL peaks 4–11 after 
irradiation with doses of Co-60 γ-rays. Solid lines were fitted 
using the Lagrange interpolation method. 
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together with a comparison of experimental and model 
data. With reduced range of random values, the algo-
rithm was not able to fit the response function properly. 
If wider range of σ values were used, the individual 
results were more divergent, but their average value 
fitted better the model predictions. This may result from 
the underestimation of the uncertainties of Ai

α values, 
especially for peaks located at the highest temperatures. 
The curve obtained for σ = δAi

α is consistent with 
the approximate model curve in the dose range up to 
104 Gy. For higher doses, the unfolded function does 
not fit the model prediction. There may be at least two 
reasons for these discrepancies: poor experimental data 
coverage and uncertainty of experimental data in this 
dose range. The second possible reason is especially 
difficult to resolve because of the complicated relation-
ship between the dose, intensity and position of the “B” 
peak [7] and the instability of the TL reader during 
high-dose read-outs. Our results seem to support this 
hypothesis: comparing experimental and calculated 
data (Fig. 5) one may observe that for peaks located 
at higher temperatures, corresponding to higher doses 
of radiation, the relative percentage error increases up 
to the value of about 25% for the highest-temperature 
peak. In turn, discrepancies over the lowest dose regions 
might result from exclusion from the calculations of 
low-temperature peaks corresponding to the lowest 
doses measured. 

Conclusions 

A new method of experimental verification of radial 
dose distribution formulae using MCP-N thermolu-
minescent detectors has been proposed. The method 
is based on unfolding of the dose-frequency function, 
a weighting factor between the peak intensities from 
irradiations with α-particles and γ-rays. The method 
was tested using α-particles of initial energy 4.8 MeV 
stopping in the detector. Our initial results demon-
strate conformity with the assumed D(r) dependence 
over the dose range up to 104 Gy. The measured fα(D) 
overestimates model calculations at the lowest doses 

and underestimates them at the doses exceeding 104 Gy. 
The discrepancies over the low dose range may result 
from excluding the low-temperature peaks from our 
calculations, while discrepancies over the higher dose 
range might result from uncertainties in the experimen-
tal data. However, our analysis showed that the new 
method gave a consistent result within a 25% range of 
uncertainty. Conversion of the unfolded function to the 
radial dose distribution function is complicated because 
the particle slowing-down process has to be considered. 
The problem would be much simpler if the energy stored 
in the detector were deposited by monoenergetic parti-
cles. Work on developing ultra-thin MCP-N detectors 
for this purpose is under way. 
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Appendix 

Derivation of the guess function fα(D), Eq. (11). 
The element of cross-sectional area, dS, irradiated by a given dose, D, can be calculated using the following 

formula: 

This function has exactly the same physical meaning as the fα(D) function: 

The minus sign results from the fact that the derivative decreases over the whole range of doses. 
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