Phase constitution of an LaFe_{II.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{I.2} alloy investigated by Mössbauer spectroscopy

Piotr Gębara, Piotr Pawlik, Jerzy J. Wysłocki, Małgorzata Szwaja

Abstract. In the present work the phase constitution and magnetic ordering of the magnetocaloric LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy in the as-cast state and after annealing at 1323 K for 1 h (in case of ribbons) and 49 days (in case of bulk) were studied. For bulk and ribbon samples in as-cast state three crystalline phases were identified: dominant ferromagnetic α -Fe, minor ferromagnetic La(Fe,Co)Si and traces of paramagnetic La(Fe,Si)₁₃ phase. Appropriate heat treatment resulted in the evolution of phase constitution of the alloy, where two crystalline phases were developed: the dominant paramagnetic La(Fe,Si)₁₃ phase and a minor fraction of the ferromagnetic α -Fe for both bulk and ribbon samples.

Key words: magnetocaloric materials • Mössbauer spectroscopy

Introduction

magnetic entropy change $|\Delta S_M|$, and the Curie point $T_{\rm C}$ around room temperature, was intensified since the discovery of a giant magnetocaloric effect (GMCE) in Gd₅Si₂Ge₂ alloy [9]. Here, under the change of external magnetic field $\mu \Delta H = 5 \text{ T}, |\Delta S_M|$ reaches 18.5 J/(kg·K) at around $T_{\rm C}$ of ~276 K [9]. Over the last decade the research was focused on $La(Fe,Si)_{13}$ alloys. Due to the high iron content (\sim 80 at.%), these materials are relatively cheap and reveal good magnetocaloric properties at room temperature. Depending on the composition and heat treatment, these alloys can form two different structures: tetragonal or cubic. The high magnetocaloric effect was revealed for crystalline cubic NaZn₁₃-type phase (space group Fm3c) [7, 8]. Furthermore, appropriate admixture results both in the change of Curie temperature $T_{\rm C}$ and magnitude of the magnetocaloric effect [4, 5, 10]. Magnetic entropy change $|\Delta S_M|$ reaching up to 31 J/(kg·K) is not only the effect of transition from ferro- to paramagnetic state, but also the first order phase transition around $T_{\rm C}$. High temperature annealing of these alloys results in evolution from dendritic in the as-cast state to the fully homogenized microstructure [1]. Furthermore, processing route can impact the annealing time needed for obtaining appropriate phase constitution and magnetocaloric effect [2]. Our earlier studies have also shown that admixtures of Al or Ga can affect the Curie point [3]. The aim of the present work was to investigate the phase constitution

Research on new magnetic materials, revealing a large

P. Gębara[∞], P. Pawlik, J. J. Wysłocki, M. Szwaja
Częstochowa University of Technology,
Faculty of Processing Materials, Technology and Applied Physics,
Institute of Physics,
19 Armii Krajowej Str., 42-200 Częstochowa, Poland,
Tel./Fax: +48 34 325 0795,
E-mail: pgebara@wip.pcz.pl

Received: 11 June 2012 Accepted: 14 September 2012 and magnetic ordering in bulk and ribbon samples of the $LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2}$ alloy.

Sample preparation and experimental techniques

The ingot sample was obtained by arc-melting of high purity elements under inert gas atmosphere (Ar). Master alloy was prepared for stoichiometric composition corresponding to formation of the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} phase. From part of the ingot, the ribbon samples were prepared by melt-spinning technique under the Ar atmosphere with a copper wheel speed of \sim 35 m/s. Bulk and ribbon specimens were sealed-off in quartz tubes under low pressure of the Ar and subsequently annealed at 1323 K for 1 h (in the case of ribbons) and 49 days (for bulk samples). X-ray diffraction was carried out using a Bruker D8 Advance diffractometer (with CuKa radiation) equipped with a LinxEye semiconductor detector. Theoretical diffraction patterns were simulated and fitted to experimental data with PowderCell 2.4 [6] software. Mössbauer spectra were measured using a Polon Mössbauer spectrometer with a ⁵⁷Co:Rh source in transimission geometry and subsequently analysed using WinNormos for Igor software. The samples were subjected to the mechanical polishing and etching for 3 s in a 0.5% Nital solution in order to reveal microstructure using a metallografic microscope NEOPHOT-32.


Fig. 1. X-ray diffraction patterns measured for bulk (a) and ribbon samples (b) of the $LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2}$ alloy in as-cast state.

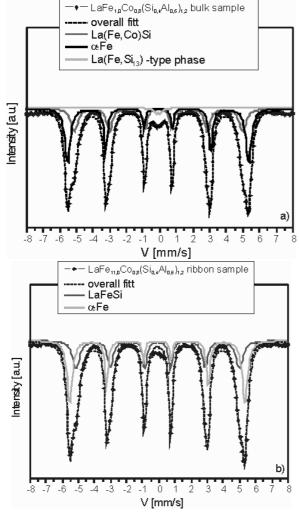
Results and discussion

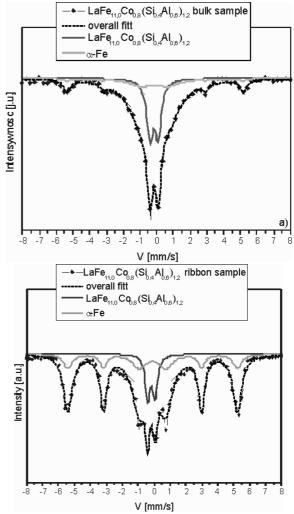
The X-ray diffraction scans measured for bulk and ribbon samples of the $LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2}$ alloy in as-cast state together with the calculated theoretical diffractions, are shown in Fig. 1.

The analysis carried out for both as-cast samples shows that the main crystalline phase formed during solidification from melt is the α -Fe, that coexists with the tetragonal LaFeSi phase of the space group P4/nmm. Calculated contributions show that 92% and 93% of the volume, respectively, for bulk and ribbon samples is attributed to the α -Fe phase. The rest of material is composed of the LaFeSi phase. Corresponding cell parameters calculated for constituent phases show similar values for both bulk and ribbon samples. For α -Fe phase the lattice constant a = 2.86 Å in both cases, while for the LaFeSi phase – a = 4.07 Å and c = 7.15 Å for bulk samples and a = 4.09 Å and c = 7.20 Å for the ribbon. Such small discrepancies may by due to the different conditions of the sample preparation.

The X-ray diffraction patterns measured for the annealed samples, are shown in Fig. 2. It was revealed that the heat treatment resulted in a significant change of the phase constitution. As an effect of annealing, the cubic NaZn₁₃-type phase of the space group *Fm3c* was formed. It was shown that ~97 vol.% of the NaZn₁₃-type phase is formed for bulk sample, while for ribbons the formation of this phase decreases to 63 vol.%.

Fig. 2. X-ray diffraction patterns of the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy subjected to annealing at 1323 K for 49 days for bulk sample (a) and 1 h for ribbon (b).




Fig. 3. Mössbauer spectra measured for the $LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2}$ alloy in as-cast state in a form of bulk (a) and ribbon (b) samples.

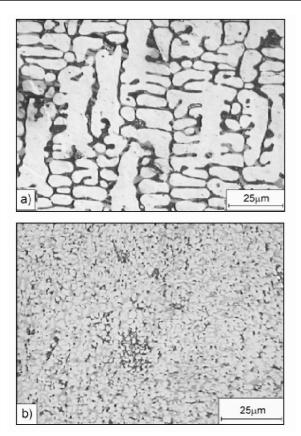
In both cases the rest of the volume is occupied by α -Fe phase. The calculated lattice constant a for the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} phase of NaZn₁₃-type reaches 11.55 Å for bulk and 11.56 Å for ribbon, respectively, while lattice constant determined for α -Fe was equal to 2.86 Å in both samples.

In Figure 3 the Mössbauer spectra measured of the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy in as-cast state for bulk and ribbon samples are presented. Analysis of Mössbauer spectrum for the bulk sample has shown the presence of two ferromagnetic phases: α -Fe and LaFeSi in the alloy constitution. Furthermore, a doublet which was attribute to paramagnetic phase was revealed. This can be related to the presence of nuclei of the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} phase. The volume fractions of constituent phases are 51 vol.% for α -Fe, 46 vol.% for LaFeSi and 3 vol.% for LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} phase.

The Mössbauer spectra for ribbon annealed for 1 h and bulk sample annealed for 49 days are shown in Fig. 4.

The analysis has shown the coexistence of dominant paramagnetic LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} and remanent ferromagnetic α -Fe phases. It was shown that for the long-time annealed bulk sample about 85% of the volume is occupied by the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} phase.

Fig. 4. Mössbauer spectra measured for the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy bulk sample annealed at 1323 K for 49 days (a) and ribbon annealed for 1 h (b).


Much smaller fraction (66 vol.%) was formed during short-time annealing of ribbon.

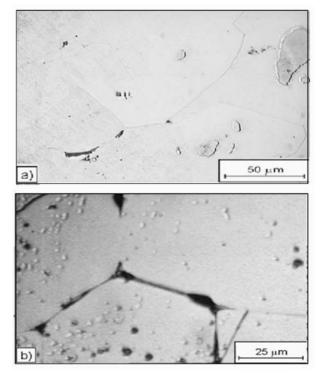
Microstructure of the as-cast LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} bulk and ribbon samples are shown in Fig. 5. Both samples revealed dendritic microstructure, where dendrites were formed by α -Fe phase, while other alloy components were expelled into the dendrite arm spacing. For ribbon sample the dendrite arms have smaller widths than that for bulk sample. Such a change of microstructure is caused by different cooling rates during solidification of bulk samples and ribbons.

The microstructures of bulk and ribbon samples of the $LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2}$ alloy subjected to annealing at 1323 K were shown in Fig. 6. Heat treatment carried out for both specimens caused homogenization of their microstructure.

Conclusions

The X-ray diffraction for the as-cast LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy show crystallization of cubic α -Fe and tetragonal LaFeSi phases. For bulk specimens, Mössbauer spectra analysis revealed that except α -Fe and LaFeSi a small amount of paramagnetic NaZn₁₃-type phase is also present. Annealing of the

Fig. 5. Microstructure of the $LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2}$ alloy in as-cast state for bulk (a) and ribbon (b) samples.


samples resulted in a change of the phase constitution and formation of paramagnetic LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} phase coexisting with small quantity of the ferromagnetic α -Fe. Application of melt-spinning technique allowed crumbling of microstructure, thus causing acceleration of formation of the NaZn₁₃-type phase. However, the major drawback is a smaller contribution of this phase in alloy constitution.

Acknowledgment. Work supported by the research project N N507 233040 financed by the Polish National Science Centre in years 2011–2014.

References

- Gębara P, Pawlik P, Kulej E, Wysłocki JJ, Pawlik K, Przybył A (2010) The evolution of microstructure in annealed LaFeSi-type alloys. Opt Appl XXXIX 4
- Gębara P, Pawlik P, Skorvanek I, Marcin J, Wysłocki JJ (2010) Structural and magnetocaloric study of the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy. Acta Phys Pol A 118:5
- Gebara P, Pawlik P, Skorvanek I *et al.* (2012) The influence of alloy admixture on structure and properties of La(Fe,Co,Si)₁₃-type phase. Acta Phys Pol A 121:5–6

Fig. 6. Microstructure of the LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} subjected to annealing at 1323 K for bulk sample for 49 days (a) and ribbon sample for 1 h (b).

- Hu Feng-xia, Shen Bao-gen, Sun Ji-rong, Cheng Zhaohua, Rao Guang-hui, Zhang Xi-xiang (2001) Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe_{11.4}Si_{1.6}. Appl Phys Lett 78:3675 (3 pp)
- Hu Feng-xia, Shen Bao-gen, Sun Ji-rong, Wang Guan-jun, Cheng Zhao-hua (2002) Very large magnetic entropy change near room temperature in LaFe_{11.2}Co_{0.7}Si_{1.1}. Appl Phys Lett 80:826 (3 pp)
- 6. Kraus W, Nolze G, POWDERCELL 2.4, D-BAM, 12205 Berlin
- Palstra TTM, Mydosh JA, Nieuwenhuys GJ, van der Kraan AM, Buschow KHJ (1983) Study of the critical behavior of the magnetization and electrical resistivity in cubic La(Fe,Si)₁₃ compounds. J Magn Magn Mater 36:290–296
- Palstra TTM, Werij HGC, Nieuwenhuys GJ, Mydosh JA, de Boer FR, Buschow KHJ (1984) Metamagnetic transitions in cubic La(Fe_xAl_{12-x})₁₃ intermetallic compounds. J Phys F: Met Phys 14:1961–1966
- Pecharsky VK, Gschneidner KA (1997) Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290K. Appl Phys Lett 70:3299 (3 pp)
- Xu Bo Liu, Altounian Z (2003) Effect of Co content on magnetic entropy change and structure of La(Fe_{1-x}Co_x)_{11.4}Si_{1.6}. J Magn Mater 264:209–213