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In crystalline solids, having periodicity of the lattice, 
various physical quantities are invariant under an ap-
propriately selected projection operator, which is a 
sum (with relevant coefficients) of transformations of 
the point group of the crystal. In the paper reciprocal 
lattices and quantities with the full symmetry of the 
Brillouin zone (BZ) are considered. Examples of such 
quantities are electronic densities, Fermi surfaces, the 
effective mass and associated quantities as, e.g. Comp-
ton scattering spectra [3, 4] 

(1)  

where ρ(p) is the electron density in the extended mo-
mentum space p. All these quantities can be expressed 
as a series of lattice harmonics Fl,ν(θ,φ) of a given sym-
metry [8, 12] 

(2)  

where the index ν distinguishes harmonics of the same 
order, (θ,φ) are the azimuthal and polar angles of the 
direction p with respect to the reciprocal lattice coor-
dinate system and the fl,ν(p) are the radial coefficients 
of the function f(p). The idea of such an expansion 
was proposed by Houston [8] and then applied in many 
papers, e.g. [14], at the beginning to get the isotropic 
component f0(p). The task of this paper is quite differ-
ent. Knowing values of f(p) along a limited number of 
directions p, reconstruction of f(p) in the whole three-
-dimensional (3-D) space p is essential – sometimes its 
anisotropy is more important than the isotropic part. 
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This is the case when, e.g. one wants to reconstruct 
anisotropy of the Fermi surface from a few measured 
Compton profiles. 

As it was discussed in Refs. [5, 6, 12] (which deal 
with cubic structures), the maximum number of fl,ν(p) 
that can be fitted to f(p) without undue loss of precision 
is equal to the number of data f(p’) only if the p’ are 
chosen along very particular directions p’(θ,φ), which 
we call special directions SDs. Such a treatment is ap-
proximately equivalent to applying Gaussian quadrature 
in calculations of the radial functions that occur in the 
expansion of data into lattice harmonics. 

The idea of SDs was introduced by Bansil [1] to 
reduce 3-D integration of a periodic function of a wave 
vector k to one-dimensional (1-D) integral. The next 
papers [2, 5, 6, 9, 10] were devoted to finding such sets 
of SDs which allow to reproduce an anisotropy of f(p) 
too and in all of them, except for Ref. [9], only cubic 
structures were considered. 

In Ref. [10] (also in the present paper) the results 
were compared with those published in Refs. [1, 2, 5, 
6, 9] in the following way. On the basis of functions 
f(p), known for a limited number of directions p(θ,φ), 
we are able to determine only a limited number of the 
expansion coefficients, i.e. 

(3)  

where f a
l,v(p) denote the approximated coefficients, 

which, except for a few functions f(p) used for their 
determination, describe arbitrary f(p) only with some 
approximation. 

The correctness of their determining, depending 
on the choice of directions p(θ,φ), can be estimated by 
interdependencies between a f a

l,ν(p) and true fl,ν(p) in 
the following form: 

(4)  

where the indices (n,μ) > (l,ν)max and coefficients d 
define a deviation of f a

l,v(p) from its true value fl,ν(p) 
(more details in Ref. [10]). This is illustrated on the 
example of determining the isotropic component based 
on three high-symmetry directions, HSD (in the experi-
ment such profiles are usually measured) and three sets 
of 1-, 2- and 3-SDs, displayed in Fig. 1. In the case of 
1-SD all authors ([1, 2, 9]) proposed the same solution 
– the cross-cut of zeros lines of two first anisotropic 
harmonics F4 and F6, while for 2- and 3-SDs results from 
Ref. [5] were used. 

In the case of three HSD ([100], [110] and [111]), 
the isotropic average f a

l,v(p) was estimated either from 

Eq. (3) (by using standard inversion technique):  

(5)  

or the average over these directions was made, i. e. 

(6)  

denoted in Table 1 as 3-HSD3 and 3-HSD1 in connection 
with using, in Eq. (3), three and one lattice harmonics, 
respectively. 

On the example of 3-HSD we show the way of 
calculating coefficients dl,μ defined in Eq. (4) and 
presented in Table 1. Functions f[100](p), f[110](p) and 
f[111](p) are expanded into infinite lattice harmonics 
series according to Eq. (2) 

          f[100](p) = f0(p) + 2.2913 f4(p) + 1.2748 f6(p) 
  + 2.9607 f8(p) + 1.8854 f10(p) + 3.4775 f12.1(p) + …

         f[110](p) = f0(p) – 0.5728 f4(p) – 2.0715 f6(p) 
    + 1.6654 f8(p) – 0.0589 f10(p) – 0.6419 f12.1(p) + …

        f[111](p) = f0(p) – 1.5275 f4(p) + 2.2662 f6(p) 
  + 0.8772 f8(p) – 2.9794 f10(p) + 0.2743 f12.1(p) + … 

and next inserted into Eqs. (5) and (6).
As can be seen, when anisotropy is such that even the 

component f14 is important, knowing f(p) along 3-SDs 
[5] allows to reproduce the isotropic component f0(p) 
perfectly. Moreover, the results presented in Table 1 
show that: 

Fig. 1. Stereogram of three sets of SDs described by the fol-
lowing angles (θ,φ) 1-SD – (74.54, 26.00); 2-SD – (73.40, 37.99) 
and (88.24, 19.08); 3-SD – (64.49, 35.34); (79.01, 11.30) and  
(81.00, 33.68); and three high-symmetry directions marked in 
the irreducible part of the BZ (in the crystallography so-called 
asymmetric unit of the BZ). 

Table 1. Values of the coefficients dl,μ from l = 4 up to l = 14 (defined in Eq. (4)) describing the deviations of f0
a from their 

true values for two cases of using 3-HSD and three sets of SDs presented in Fig. 1 

l, μ 3-HSD1 3-HSD3 1-SD 2-SD 3-SD

  4   0.064 – – – –
  6   0.490 – – – –
  8   1.834   1.833 –1.466 – –
10 –0.384 –0.254   0.977 – –
12.1   1.037   0.771   0.502 –0.701 –
12.2 –1.663 –1.869 –0.667   1.358 –
14   1.073   0.566   0.784 –0.572 –
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10 – f0(p) should be described by the lattice harmonic, 
i.e. by Eq. (5) instead of (6); 

20 – 1-SD leads to the same f0(p) as 3-HSD. 
It is worth emphasizing that the way of checking 

the accuracy of describing any function f(p) by the 
lattice harmonics series, proposed in Ref. [10] and 
demonstrated on the example of f0(p) in Table 1 of this 
paper is the most objective, because it does not depend 
on the choice of the approximated function f(p). In 
order to demonstrate how it may look for real data, 
in Fig. 2 the quantity Δf0(p) which reads 

is shown with using dl,μ from Table 1 and functions fl,μ(p) 
which correspond to radial components of electron-
-positron momentum densities in ErGa3 presented 
in Fig. 3 and in Ref. [10]. In this particular case, the 
use of 1-SD reproduces the isotropic component f0(p) 
exceptionally well. 

The method of finding SDs, applied in the paper 
[10], is demonstrated in Fig. 3 on the example of 7-SD. 
The previous proposal [9] (triangles in Fig. 3) was based 
on the assumption that the best way of determining SDs 
is to choose such zeros of the first omitted harmonic 
which, first of all, are more or less equally spaced and 
secondly are close to zeros of the second neglected 

harmonic. Such a choice was suggested by the results 
of the tests performed for some models [9]. However, 
as it was pointed before, the results of such tests may 
depend on the behaviour of higher components fn,μ(p) 
of a particular model, while a procedure of determin-
ing dn,μ coefficients is univocal. Proceeding as in [10], a 
slightly another solution than in Ref. [9] is found. Be-
ing on lines of zeros of the first harmonic, omitted in 
Eq. (3) (in this case of F14), a trial to eliminate contri-
butions from both F16.1 and F16.2 was undertaken – such 
a choice is indicated in Fig. 3 by the full circles. As it 
is seen, in this case two sets of 7-SDs (determined in 
Ref. [9] and in this paper) are very similar. 

Summarizing 

The proper choice of SDs optimizes the description 
of various physical quantities, having symmetry of the 
lattice as well as defines (to minimize experimental 
time and costs) which projections should be measured 
in, e.g. Compton [7] or neutron scattering [13] and 
positron annihilation [11] experiments. As far as we 
know, there are two quite different opinions that one 
should measure spectra along: 1 – main symmetry 
and intermediate directions [7]; 2 – only intermediate 
directions [11] (however, the author did not define 
them). Results found in papers [1, 2, 5, 6, 9, 10] and 
examples presented above clearly indicate that they are 
not only low-symmetry directions, but they also must 
be very particular. Of course, their number depends on 
the anisotropy of f(p) and the symmetry of the lattice, 
i.e. on the volume of the irreducible part of the BZ. 
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