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Introduction 

Studies of the Doppler broadening of the electron-
-positron (e-p) annihilation radiation become more and 
more advanced and common method of investigating 
bulk and defected materials. Since the application of 
two-detector coincidence technique allowed to get 
quite accurate data for great momenta in e-p momen-
tum distribution of annihilating pair ρ(p) (up to pL = 
60 × 10–3 m0c) [16], it is now possible to investigate core 
electron states in the sampled material. In particular, 
this tool is very important in identification of many 
kinds of defects. 

For a proper interpretation of the experimental 
results, it is useful, however, to support the studies with 
calculation of the corresponding spectra. The older and 
recent calculations, though close to the experimental 
data, exhibit some deviations both in low and in high 
momentum regime. Therefore, there is a necessity to 
reconsider the ways of taking into account the positron 
interaction with bound electrons of atoms in solids. 
The common approximations in use in positron physics 
and in calculations of Doppler spectra based on den-
sity functional theory, are local density approximation 
(LDA) [5, 10, 11], (see also e.g. [1]), generalized gradi-
ent approximation (GGA) [2, 3] and weighted density 
approximation (WDA) [19]. The GGA and WDA give 
better results than the LDA, however, GGA is param-
eter dependent and WDA is, in practice, very difficult 
in common applications. 

In the low momentum regime, thus in case of an-
nihilation of the positron with valence electrons one 
should lend from some experiences reached in studies 
of the electronic structure of metals and Fermi surface 
by positrons, presented in a series of papers of e.g. 
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Kontrym-Sznajd and Sormann [14, 21, 22] and others 
[15]. One should take into account the Bloch char-
acter of the electron wave function (Bloch modified 
ladder theory). This kind of approach seems to be too 
complicated for present purposes, i.e. for localized 
electron states, as well as such are the methods devoted 
to positron annihilation in gases (see e.g. [12]) and a 
simpler treatment of the e-p interaction close to the 
atom would be desirable. 

In this paper one is interested in calculations of the 
momentum densities of core electrons interacting with a 
positron by developing the method presented by Chiba 
et al. in Ref. [9], based on earlier papers of Carbotte 
and Salvadori [8, 20]. 

Theory and results

The momentum distribution of the e-p pair can be writ-
ten in terms of two-body wave function as 

(1) 

where r0 and c are the classical electron radius and the 
velocity of light, respectively, and the summation is over 
the occupied electron states. 

The Doppler spectra, corresponding to the annihila-
tion of the positron with an electron in a core state c, 
can be obtained by 

(2)  

where ρc(p) is the contribution to ρ(p) from the core 
state c. 

According to the approach presented in Refs. [8, 
20] the wave function ψc of the positron-core electron 
pair can be approximately given by 

(3) 

where ψc and φ+0 are the wave functions of the core 
electron and the positron, respectively, in its lowest 
state within the independent particle model (IPM). Δc 
is the difference between the core electron energy level 
and the Fermi energy (the bottom of conductivity band 
in a non-metal). The indexes k and k’ are reserved for 
unoccupied states of the electron and the positron. V(k) 
is the Fourier transform of the e-p interaction potential 
and, in general, should describe some screening of the 
positron by surrounding electrons. There are, however, 
arguments of Bonderup et al. [5] who showed that for 
the case of positron surrounded by the electrons of 
high density one can successfully use the bare Cou-
lomb potential if the perturbation series for the above 
wave function is limited to the first order. Thus, we use 
here the Born approximation for the wave function and 
the Coulomb potential instead of the screened one (for 
general purposes, the following expressions still contain 
the screening length parameter α, which is put to zero 
in our computations). 

In order to perform simple calculation of formula 
(3), avoiding tedious and impractical summations over 
higher states, Chiba et al. [9] proposed the following 
approximations for the positron and electron wave 
functions corresponding to unoccupied states (in fact 
Eq. (4) had been given already by Carbotte and Sal-
vadori [8]) 

(4)   ψk(x) ≈ φ+0(x)e–ikx 

(5)  φ+k’(x) ≈ φ+0(x)e–ik’x 

whereas the second approximation is rather obvious, 
the first one, concerning the electron can be justified 
by the fact that the electron wave function correspond-
ing to higher states resembles more the plane wave 
and, moreover, near the core is damped due to an 
orthogonality to the core states of the atom. Thus, in 
practice, the electron feels the repulsive potential (see 
e.g. the discussion in Ref. [18]) and the situation re-
sembles that of positron near the nucleus. An example 
is given in Figs. 1 and 2 and in Ref. [20]. However, 
Eq. (4) is simpler than the OPW formula of Ref. [20]. 
The above formulas allowed Chiba et al. to simplify 
Eq. (3) by the application of Dirac delta function, ac-
cording to the following approximation 

(6) 

The approximations [8, 20] similar to Eq. (6) lead, 
as shown in Ref. [5], to a considerable overestimation of 
the enhancement of the electron density at the positron. 
Therefore Bonderup et al. [5] proposed instead to apply 
the LDA approximation to the enhancement for the 
positron-core interaction. Then, the schemes based on 
the LDA approximation given in a series of papers of 
Daniuk et al. [10, 11] as well as GGA schemes by Bar-
biellini et al. [1–3] and others (see e.g. Refs. [7, 13, 17]) 
have been utilized in many theoretical investigations of 
core electrons in solids. 

The approximation (6) can be, however, simply cor-
rected if one expands the square of the positron wave 
function into a Fourier series with respect to reciprocal 
lattice vectors of the investigated crystal 

(7) 

and 

(8) 

The Fourier coefficients aG are such that the next 
terms of the expansion are subtracted from the first 
leading term and hence a suppression of the positron 
function near the core can be taken into account. 

Then, the formula for the e-p momentum density 
for a given core electron state c reads 
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(9)  

where the contribution to ρc(p), related to non-inter-
acting particles is 

(10) 

and the correction η(p) with respect to the e-p interac-
tion, can be expressed as 

(11) 

In our exemplary calculations for Al we used com-
puter codes developed by Alatalo et al. [1], appropri-
ately modified for our purposes. Thus, the electron wave 
functions calculated in the atomic part of the code have 
been used for determining the electron density within 
the atomic superposition method. On this ground, the 
potential for the positron including the e-p correlation 
has been found and the corresponding Schrödinger 
equation for the positron wave function was solved. In 
the original scheme, all partial momentum densities cor-
responding to different scheme are calculated within the 
LDA or GGA approximation in which contact values of 
e-p correlation function are used according to Boroński-
-Nieminen [6] or Barbiellini [2, 3] formulas. 

In our method we use this prescription, at least 
for now, only for the valence states. For core states, 
the approach presented above is applied. The values Δc 
are found by employing the WIEN2k code [4] which sup-
ports the calculation with the value of the correspond-
ing Fermi energy. These values are 55.2435, 3.9085, 
2.5205 a.u. for the 1s, 2s, and 2p states, respectively. 

The influence of the correction due to e-p inter-
action on J0(p) is shown in Figs. 1 and 2. The factor 
enhancing J0(p – G) in Eq. (11) only for G = 0 can be 
presented as a monotonously decreasing function, as 
shown in Fig. 1 of Ref. [9]. The next terms, correspond-
ing to the vectors G ≠ 0, contribute almost equally to 
the leading one, however, their signs are negative and 

in some regions of p the net values of J(p) can be even 
less than J0(p). It is worth reminding that in the scheme 
of Alatalo et al. [1] the squares of the partial momentum 
densities |J0(p)|2 are simply multiplied by the constant 
enhancement based on the LDA calculation for a given 
atomic shell and normalized to the total annihilation 
rate. Though practical, contrary to our method the 
approach [1] presents an artificial way of treating the 
complicated effect of change of the electron states 
due to the positron. 

In Figure 3 we showed the calculated Doppler spec-
tra for 1s, 2s and 2p electron states in Al. The results 
of our calculations are compared to the corresponding 
LDA curves. As seen, all the spectra are slightly lower 
than the LDA values and the values of the enhance-
ment of different shells is decreasing with momentum. 
This feature is transferred to the total one-dimensional 
momentum densities (Fig. 4) which are also lower for 
high values of momenta than LDA curve. Whereas the 
latter distribution, if properly normalized, is slightly too 
high if comparing to the experimental points (see e.g. 
[1, 13, 17]) our curve runs slightly below the data. 

2
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Fig. 1. The effect of positron-electron interaction for 2s 
electron state in Al. The dashed curve corresponds to the 
function J0 calculated in the IPM approximation, whereas 
the solid curve relates to calculations performed within the 
presented approach. 

Fig. 2. The same quantities as in Fig. 1, but for the 2p core 
state. 

Fig. 3. Partial one-dimensional momentum densities for 1s, 
2s, 2p, 3s and 3p electron states in Al. Solid curves represent 
the distributions found according to the presented method and 
dashed curves correspond to calculations performed within 
the LDA approximation. 
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Conclusions 

We have presented an approach to calculations of Dop-
pler spectra that bases on some older ideas, however, 
correcting their weaknesses criticized by Bonderup et al. 
[5]. Owing to the new representation of matrix elements 
(Eq. (8)) we have avoided the unphysical overestimation 
of the contribution of these elements to J0(p) and the 
general behaviour of the enhancement, i.e. diminishing 
of their values with momentum agrees with the com-
monly known rules of quantum mechanics that the scat-
tering amplitude of two colliding particles is decreasing 
with their relative velocities. Even if our values for 
partial enhancement are too low, one should remember, 
however, that in our preliminary tests we used atomic 
electron wave functions whereas , as already shown by 
Mijnarends et al. [17], using solid state 2s and 2p wave 
functions for core electrons is necessary. Independently, 
the problem of screening of the positron-core electron 
interaction and using of the Born approximation for 
this case still requires reconsidering. 

In our present calculations we still used LDA ap-
proximation for valence electrons according to Alatalo’s 
[1] prescription. To be consistent, one should take into 
account that the enhancement for these states should 
be dependent on momentum as well, as is usually nec-
essary to take this into account in studies of the Fermi 
surface. All theoretical curves based on the LDA or 
GGA exhibit marked differences in relation to experi-
mental data in the range between 7 and 20 × 10–3 m0c, 
just in the region near the Fermi surface. This is also a 
deficiency of our curve, corresponding to the total mo-
mentum density and the explanation is as given above. 
The studies on this subject and calculations for other 
elements are going on. 
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