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Introduction 

It is a well known accumulation ability of huge amount 
of helium by UO2 and ThO2 crystals during several bil-
lions of years in their minerals. Similar phenomena of 
helium accumulation occurs in the nuclear fuel under 
irradiation where helium is produced as a result of the 
alpha decay of certain actinides. Initially it was con-
sidered, although helium is the noble gas, that a weak 
chemical bonding can be induced in the environment 
of heavy atoms. 

The first attempt of explanation of the helium 
incorporation in UO2 crystal was undertaken in the 
early 1990s [11]. It was estimated the bond energy of 
helium atoms in the uranium dioxide crystal equal to 
–0.1 eV. As the result was negative, so the helium atom 
could be permanently chemically bond in the uranium 
dioxide crystal. 

The later study using the density functional theory 
(DFT)-generalized gradient approximations (DFT-
-GGA) [3, 12] frame-work – did not confirme this 
result. The obtained results of bond energies lying in 
the range from +0.77 to +1.83 eV exclude the ability 
of chemical bond.

In Ref. [7] another approach of the issue was 
presented. Instead of chemical bond – the helium 
atom immobilization in a deep potential well inside 
the crystallographic lattice was proposed. To solve the 
issue “ab initio” Wien2k [2] program packages were 
used. The methods estimate the energy barrier between 
interstitial sites in perfect lattice UO2 + He on about 
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8 eV. We have shown there that in these circumstances 
the helium atom creates local bond state and performs 
oscillation of small amplitude, so the probability of over 
barrier jump to neighbour interstitial site, and hence 
the diffusion coefficient are close to zero. 

The height of the potential barrier between intersti-
tial sites in perfect lattice was evaluated in [11], which 
appeared to be equal to +3.8 eV. All these estimates 
were obtained using methods of molecular thermody-
namics. Authors in Ref. [18] give two potential values 
2.56 and 2.3 eV making reference to [9]. Later in this 
work the discrepancy will be discussed over. 

Diffusion significantly favour the crystal lattice 
defects. In the case of UO2, as shown by experimental 
results, the effect is large. Authors of Ref. [17] using 
3He(d,α)1H Nuclear Reaction Analysis Technique, 
obtained for the crystalline UO2 at a temperature of 
1000°C the diffusion coefficient equal to D = 3.7 ± 
0.74 × 10–14 cm2·s–1, while authors of Ref. [16] applying 
the same method, obtained for the UO2 matrix and the 
same temperature the diffusion coefficient equal once 
to D = 2.9 × 10–13 cm2·s–1 and once to D = 3.7 × 10–14 
cm2·s–1 depending on the flux value. 

Annealing, reducing the amount of defects, reduces 
the diffusion coefficient D, in other words the defects 
enhance the diffusion mechanism. So, for example, the 
authors [13] obtained the value of diffusion coefficient 
equal to D = 6 × 10–13 cm2·s–1, and in [15], after anneal-
ing at 1100°C during 25 min its value decreased below 
2 × 10–14 cm2·s–1. 

Although annealing at high temperatures reduce 
the amount of defects, it does not eliminate them. 
They remain at the level of equilibrium for a given 
temperature. According to the Gibbs distribution, the 
number of defects remaining in the thermodynamic 
equilibrium with environment, is proportional to the 
Boltzmann factor –exp(Ei/kT), where Ei is the energy 
of i-defect. Despite of the high-temperature annealing, 
their amount can be still substantial. For this reason, the 
actual value of D for a perfect crystal is always smaller 
than the experimental values obtained. This also applies 
to the above-mentioned values, obtained in [15]. 

The calculation of the diffusion coefficient we made 
applying two-site model which was for the first time 
used for the system UO2 + He in [7] and we evaluated 
the time for an over-barrier jump. In contrast to [7] 
in the calculations we took into account changes in local 
deformation during He wandering between vacancies 
and its impact on the barrier height, what appeared to 
be significant. 

Method of calculations 

“Ab initio” calculations of the electronic structure were 
performed using the Wien2k program package [2] based 
on the density functional theory (DFT). The Kohn-Sham 
(K-S) total-energy functional is used here as follows 

(1) 

The first term of Eq. (1) describes the kinetic energy 
of electrons, in the second term Vion(r

→
) is the electron-

-ion potential and n(r
→

) is the electronic density. The 
third term describes the Coulomb electron-electron 
interaction, the fourth term EXC[n(r

→
)] is the exchange-

-correlation energy functional and the fifth term 
Eion({R

→
i}) is the Coulomb energy associated with in-

teraction among the nuclei at positions {R
→

i}.
Taking into consideration the above, in all DFT 

calculations we use several exchange-correlation energy 
functional EXC[n(r

→
)] within the generalized gradient 

(GGA) approximations. All the calculation were per-
formed using the Hubbard model (DFT+U), correc-
tive exchange-correlation energy functional EXC[n(r

→
)], 

namely: PBE-GGA+U. 
The electron spin-polarization was taken into ac-

count. 

Deformation of the crystal lattice while wandering 
helium atoms between octahedral sites 

Compounds UO2 and ThO2 are isomorphic, with a face-
-centred cubic lattice (fcc) of the calcium fluorite type 
structure, with similar lattice parameters: a = 5.396 
and 5.5975 Å [1], respectively and space group Fm-3m 
(#225). 

Helium atom located in the octahedral site causes 
a local increase in lattice parameters. This change is 
not big because of the small ionic radius of He. Thus, 
in the case of UO2 + He it is only from 0.04 to 0.02 Å 
depending on the assumed model [12]. According to our 
calculations, it is at the level of 0.017 Å, which is only 
about 0.3% of the lattice parameter. All inter atomic 
distances in the crystal structure are increased exactly 
of this percent. As shown by our calculations oxygen 
atoms being closest to the He, spread additionally 
apart at a distance of approximately 0.00045 Å, which 
is negligibly small.

The uranium atoms remain in their places. Thus, 
the local deformation of the crystal lattice is negligible, 
and the effect in practice settles down to a small, local 
increase in lattice parameter. So, with this in mind, in [7] 
we assumed that the deformation of the lattice during 
the helium migration between the sites does not change 
the crystal field potential. In this paper, we decided to 
verify this hypothesis. 

Numerical calculations show that with increasing 
deviation from the equilibrium state, for example, from 
(0, 0, 1/2), the local deformation increases, reaching a 
maximum at the position (1/4, 1/4, 1/2). This applies to both 
UO2 and ThO2. Taking into account the considered by us 
13 atomic super-cell, the helium atom in a position (0, 
0, 1/2), has in its first neighbourhood eight oxygen atoms, 
located at alike distances equal to (√3/4)a while uranium 
atoms has 6 uranium atoms in the distance equal to 1/2a 
(first coordination shell) and 8 uranium atoms in the 
distance (√3/2)a (second coordination shell). In a posi-
tion (1/4, 1/4, 1/2) the situation is different. Oxygen atoms 
in relation to the helium can be found in the three co-
ordination shells with radius r1 = 1/4a, r2 = (√5/4)a and 
r3 = 3/4a while uranium atoms in two shells R1 = √2/4a 
and R2 = √6/4a. The local changes of deformation in 
these extreme positions are shown in Table 1. 
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As you can see from Table 1, change of the local 
structure, when a helium atom is in the position (1/4, 
1/4, 1/2), is surprisingly large compared to these changes, 
when helium takes equilibrium position (0, 0, 1/2). In 
particular, a big change on movement of the oxygen 
atoms in the first coordination shell r1 – about 6% lat-
tice parameter for UO2 and more than 5% for ThO2. 
In this site of helium atom the uranium or thorium 
atoms undergo significant displacements, what is not 
observed in the equilibrium position (0, 0, 1/2). 

Crystal field potential 

For the adiabatic approach, we numerically determine 
the potential values of crystal field in UO2 and ThO2 
along the direction of neighbour interstitial octahedral 
positions. As contrasted with [7], the calculations took 
into account, as described above, changes in the local 
deformation of the lattice in position (x, x, 1/2) and their 
impact on the potential barrier height. 

By x it is denoted the current He position (x, x, 1/2) 
during displacement between the neighbour octahedral 
interstitial positions in the range from x = 0 to x = 1/4. 
Such a potential calculations were performed by usage 
of the Wien2k program package for the mentioned 
above all five exchange-correlation energy functional 
[EXC[n(r

→
)] + U approximations. The value of the cor-

relation energy U was fixed at 4.6 eV, as suggested in 
Ref. [12]. In a view of periodicity of the crystal lattice 
(Fig. 1), the calculations were performed in the range 
from (0, 0, 1/2) to (1/4, 1/4, 1/2). The potential values V(x) 
of the UO2 + He and ThO2 + He arrangement were 
calculated with the usage of PBE-GGA+U, potential 

approximations. All the calculated potentials are pre-
sented in Fig. 2. 

In determining the parameters for the Schrödinger 
equation, the potential value presented in Fig. 2 we 
approximated by the Gaussian curve 

(2) 

where ΔV – potential barrier height, x – current crystal 
coordinate of helium atom, xc = 0.25, w = 0.1549. 

For small x, better approximation is obtained by 
means of power series 

(3)    V = ΔV(8.961x2 + 433.68518x4 – 1905.72859x6),  
   x < 0.08 for UO2 
and 

(4) V = ΔV(14.156x2 + 216.67x4 – 1396.32 x6),   
  x < 0.08 for ThO2. 

Results of potential barrier height are ΔV = 4.15 eV 
for UO2 + He (Fig. 2). This value is smaller than the 
previously obtained in [7], what is a result of local defor-
mation of the crystal lattice, but is greater than obtained 
by other authors using molecular dynamics. Collected 
results of potential barrier height ΔV potentials for UO2 
+ He and for ThO2 + He are presented in Table 2. 

Helium atom in the crystal field potential well of UO2 
and ThO2 

According to the above calculation results, the helium 
atom located in the octahedral interstitial position exists 
in a deep potential well. This suggests hypothesis that 

Table 1. Change of lattice parameter Δa and change of radiuses of coordination shells of oxygen and uranium or thorium 
atoms in relation to helium atom, which is located in the position (1/4, 1/4, 1/2). Additionally in the second column, change of 
lattice parameter Δa in the position (0, 0, ½) is placed 

Chemical 
compound

Δa(0,0,½) Δa(¼,¼,½) Δr1(¼,¼,½) Δr2(¼,¼,½) Δr3(¼,¼,½) ΔR1(¼,¼,½) ΔR2(¼,¼,½) 
(Å) (Å) (Å) (Å) (Å) (Å) (Å)

UO2 + He 0.017 0.105 0.324 0.045 0.088 0.212 0.106
ThO2 + He 0.012 0.128 0.299 0.020 0.077 0.272 0.087

Fig. 1. The He atoms incorporation into the octahedral sites 
of the UO2 lattice. 
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these helium atoms can form bound states in the UO2 
and ThO2 crystal lattices. 

For the above assumptions, movement of the helium 
atoms can be described with the Schrödinger equation 
in the form 

(5) 

where: m – mass of helium atom, V(x) – potential, E – 
helium atom energy. 

If to develop the potential V(x) into power series 
around the equilibrium position and neglect all terms 
above the second power, we get the well known har-
monic oscillator approach. This eigenfunction base of 
harmonic oscillator can be the solution of Eq. (5) but 
this base is not optimal (Fig. 3). Solving Eq. (5) by us-
ing this eigenfunction, lead to the Hamiltonian matrix 
Hmn = 〈Ψm|H|Ψn〉, which is no diagonal. Using the 
numeric diagonalization methods and using the same 
Hermite polynomials as basic functions, we can find 
stationary values and eigenvectors. In our case we 
applied the Jacobi numerical methods. As the basis 
function for calculation the Ψm functions were selected, 
which are eigenfunctions of potential approximated 
with optimal parabola, at which not diagonal elements 
are minimized. 

When temperature is not equal to absolute zero, 
the helium atom can occupy each energy level, but 
probability of such an event decreases according to the 
following equation 

(6) 

where   

The thermodynamic equilibrium wave function of 
helium atoms is not already a pure eigenfunction, but 
superposition of these functions. In order to accomplish 
the condition (6) the thermodynamic equilibrium wave 
function of helium atom should get the form 

(7) 

where pn = √Pn, because then the condition 〈|Ψequilib|2〉 
= 1 is accomplished at any temperature. 

Overbarrier jump of helium atoms by crystal field 
potential barrier of UO2 and ThO2 

Let us consider the two-site model, consisting simul-
taneously of the occupied (region I) and not occupied 
adjacent octahedral interstitial positions (region II). 
We believe therefore, that the helium atom has avail-
able energy levels of the two octahedral interstitial 
positions, but it occupies one of them. The potentials 
of the two positions, their parabola approximations and 
first four graphs of wave functions Ψn(x), localized in 
the two positions are illustrated symbolically in Fig. 3. 
There are also symbolically marked the energy levels 
in both regions. Below we assess the time required for 
over-barrier jump in function of temperature. 

If the helium atom occupies a certain energy level 
in the octahedral interstitial position I (Fig. 3), its state 
describes wave function Ψ I

equilib(x). If, on the contrary, 
the octahedral interstitial position II is occupied, 
and the position I is empty – we have an analogous 
situation; the arrangement is in the quantum state 
ΨII

equilib(x). The wave functions of such an arrangement 
are analogous, but located in the second position, what 
is symbolized by the index II. However, the matrix ele-
ments, containing the functions Ψequilib(x) from different 
regions are different from zero 

(8) 

The matrix elements, containing the functions 
Ψequilib(x) from the same regions are 

(9)  

According to the general principals of quantum me-
chanics, the amplitude of Ci states, which previously were 
constants, begin to depend on time. This is described by 
the linear system of differential equations [8] 

 

Table 2. Values of potential barrier height for UO2 and ThO2 calculated by us and other authors (ΔV values are given in eV) 

Chemical compound Ref. [7] 
ΔV

This work
ΔV

Ref. [11] 
ΔV

Ref. [18] 
ΔV

Ref. [9] 
ΔV

UO2 8.12 4.15 3.8 2.56 2.3
ThO2 – 3.95 – – –

Fig. 3. Two-site model schema. E0 – zero energy level of the 
helium atom in the octahedral interstitial position, calculated 
using “ab initio” method, En

I, En
II energy levels in the regions 

I and II, respectively, Ψ0–3 – first four graphs of wave func-
tions Ψn(x), localized in the I and II positions, 1 – potential 
V(x), 2 – parabola approximations, 3 – optimal parabola ap-
proximations. 
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where C1, C2 are the state amplitudes Ψ I
equilib(x) and 

ΨII
equilib(x), respectively. 
Once summing up and once subtracting the sides of 

the above differential equations we get two separated, 
easy to solve differential equations. Omitting the techni-
cal details we get finally 

 
(11)

The amplitude C1 decreases with time as the cosine 
function and reaches the value zero after T = (πh/ 2H12) 
while C2 increases as sine function and reaches the value 
1 for the same time T. In other words the helium atom 
moved from the region I to region II after time T. The rate 
ν = 1/T also determines the quantum diffusion coefficient 
D [10]. For a crystal with cubic symmetry one has 

(12) 

where z is the number of neighbouring interstitial sites 
and 2d is the distance between two sites. 

Diffusion of helium atoms in the perfect lattice of UO2 
and ThO2 

The above described solution of the Schrödinger Eq. (5) 
for the real potential V(x) in the case of the crystal field 
of UO2 and ThO2, allows to determine the matrix ele-
ments H12, and thus calculate the diffusion coefficients 
depending on the height and shape of the potential 
barrier. The calculation results are shown in Fig. 4. The 
potential barrier for UO2 is higher than for ThO2. 

In this figure are shown also the results of measure-
ments, using 3He(d,α)1H Nuclear Reaction Analysis 
Technique (see points Z, q, r and u in Fig. 4). Using 
the values of the potential barrier height, calculated by 
molecular dynamic methods and reported in [9, 11, 18] 
and assuming that the shape of the barrier is the same 

as in Fig. 2, we calculated the diffusion coefficients for 
these potentials. This time, the experimental points, 
obtained in [9, 18] lie below the theoretical dependen-
cies. This is not surprising, because the samples used 
for measurement, inevitably had to include a lot of 
defects, all the more so that the implantation method 
used is conducive to the formation of a large amount 
of structural defects. 

On the basis of the measured values of diffusion 
coefficient at high temperatures, the authors [16] have 
estimated its value at room temperature for 10–37 cm2·s–1. 
Figure 5 shows the same dependence of diffusion coef-
ficient, but in a wide temperature range. According to our 
calculations its value for the potential barrier 4.15 eV at 
300 K should be in the case of a perfect crystal without 
defects about 10–48 cm2·s–1.

In a further drop in temperature to absolute zero, 
it should strive asymptotically to about 10–60 cm2·s–1, but 
not to zero, as it would appear from the classical model 
of diffusion. A similar temperature dependences of the 
diffusion coefficient were observed by us for the first 
time experimentally (using Mössbauer spectroscopy 
method) during migration at low temperatures the 
interstitial carbon in α-iron [4]. This phenomenon is 
characteristic of quantum diffusion, which was shown 
by us in [5, 6]. 

Discussion 

In the case when the helium atom occupies already the 
octahedral interstitial position, in order to get out of the 
crystal the atom have to make many over-barrier jumps. 
Possibility of such a jump, which is one of the channels 
of diffusion, will depend primarily on the height of the 
potential barrier. In a perfect lattice, diffusion coeffi-
cient should be smaller than in the actually measured 
samples, which always contain defects, facilitating dif-
fusion. Taking as the starting point the experimental 
diffusion coefficient values that lie at the lowest in 
Fig. 4, we obtain a barrier height value which must be 
greater than 2.56 eV. Thus, the values 2.3 and 2.56, 
obtained in [9, 18] should be excluded. The value of 
3.8 eV, obtained in [11] is equally likely as currently 
received by us and equal to 4.15 eV. In [11], a semi-
-classical method – a single Lennard-Jones potential 
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– was used for calculations while our calculations were 
made using the “ab initio” method, which is usually 
more accurate. About the final value of the barrier, 
only the future experiment can decide, carried out on 
samples with a minimum content of defects. 

Minerals of uranium and thorium dioxide are aged 
under natural conditions over millions of years at tem-
peratures much lower than obtainable in the laboratory. 
They should contain a minimum amount of defects. 
It is expected that the value of the effective potential 
barrier in the minerals will be close to those obtained 
by our values. 

Helium atoms resulting from the radioactive decay 
as α particles have the energy thousands of times greater 
than the ~ 4 electron volts barrier and can easily move 
in the crystal occupying free octahedral interstitial 
positions. The old mineral materials containing fissile 
isotopes hold fairly a lot of noble gases. 

These gases are not released during hundreds of 
millions of years from the old materials, e.g., the min-
eral thorianite at least 500 000 000 years old occurring 
in Ceylon contains as much as 10 cm3 He/g, which is 
equivalent to the fission gas concentration at a burn-up 
of 300 000 MWd/t [14]. 

Conclusions 

Helium atom located in the octahedral interstitial po-
sition of perfect crystal lattice fcc UO2 and ThO2 are 
submitted to strong repulsive forces from the surround-
ing metal and oxygen atoms, which means that it is in a 
deep potential well of depth equal to 4 eV preventing 
it from any movement in the crystals even at very high 
temperatures reaching thousands K. Thus the octahe-
dral interstitial positions in thorium dioxide, and even 
more in uranium dioxide, are effective traps for helium 
atoms. The trapped helium there immobilized, may stay 
in the crystal arbitrarily long time. This is supported 
by the old minerals, where alpha decay occurs, such as 
thorianite or uraninite which hold fairly a lot of helium 
during hundreds of millions of years and which could 
exist in a certain geological period where temperature 
was very high. 

Diffusion of helium in uranium dioxide and tho-
rium dioxide has the character of the quantum leap 
the barrier potential. While lowering the temperature 
to absolute zero diffusion coefficient does not tend to 
zero but to a finite value, equal to about 10–60 cm2·s–1. 

The α particles occurring during radioactive decay 
have a large enough energy to penetrate the crystal and 
to occupy the octahedral interstitial positions – incor-
poration process into the crystals. 
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