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Introduction 

The water-level regulation of UTSG is a very difficult 
control problem. The difficulty arises due to reasons 
such as nonlinearity of dynamics, high complexity, time 
varying and non-minimum phase dynamics (also known 
as reverse dynamics), and unreliable sensor feedback at 
low power [14]. Therefore, UTSG plants are controlled 
using constant-gain proportional-integral (PI) control-
lers, at high power operations. At low power operations 
(less than 20% of the nominal power), water level can-
not be maintained properly with the PI controller due 
to the thermal effects of UTSG and the uncertainty in 
measured values of the feedwater and steam flow rate. 
Hence, the level control is performed manually at low 
powers. Even with a skilled team of operators, the rate 
of incidents due to manual control could not be ne-
glected. So, a need for the performance improvement 
in the existing water level regulators is obvious. 

Many advanced control methods such as adaptive 
predictive control [11, 12]; fuzzy logic control [8], model 
predictive control [7, 11]; optimal control [9] and com-
bination of these control methods [10, 13] have been 
suggested to resolve the (UTSG) water level control 
problem. In spite of the many advanced control methods 
proposed, operators are still experiencing difficulties 
especially at low powers. 

One of the powerful tools for controlling industrial 
process systems is MPC [2–4] which refers to the direct 
use of an explicit and separately identifiable model to 
control an industrial process. All model predictive con-
trol (MPC) algorithms are based on the moving horizon 
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approach known as the open-loop optimal feedback 
control approach. In this method, an identified process 
model predicts first the future response; the current 
control action is then determined so as to obtain the 
desired performance over a finite time horizon. This 
method has many advantages over the conventional infi-
nite horizon control, because it easily handles the input 
and output constraints in a systematic manner during 
the design and implementation of the controller. 

Since steam generator is a nonlinear system, the lin-
ear MPC algorithm [2, 4], may not result in a satisfactory 
dynamic performance. Some nonlinear model predic-
tive control (NMPC) algorithms have been developed 
[5], these algorithms accept various kinds of nonlinear 
models such as nonlinear ordinary differential algebraic 
equations, partial differential algebraic equations and 
delay equation model. Such models can be accurate over 
a wide range of operation conditions; however, they are 
impractical for many industrial problems. Moreover, an 
NMPC that incorporates a nonlinear model may require 
tremendous computational effort for optimization; this 
consequently may disqualify NMPC for on-line applica-
tions. If a nonlinear process can be precisely described 
by a set of linear sub-models in someway such as Takagi-
-Sugeno (TSK) fuzzy model, then the design of a model 
predictive controller can be greatly simplified. 

A novel modelling methodology based on fuzzy 
logic is introduced by Takagi and Sugeno in [16]. In 
this methodology a nonlinear system is divided into a 
number of linear or nearly linear subsystems. A quasi-
-linear empirical model is then developed by means 
of fuzzy logic for each subsystem. The model is a rule-
-based fuzzy implication. The whole process behaviour 
is characterized by a weighted sum of the outputs from 
all quasi-linear fuzzy inference systems. This methodol-
ogy facilitates the development of a number of quasi-
-linear models regulated by fuzzy computations. It also 
provides an opportunity to simplify the design of model 
predictive controller. 

In this paper, Takagi-Sugeno modelling methodol-
ogy is used to generate a fuzzy convolution model for 
U-tube steam generator. Consequent parameters of 
this model are updated on-line with a recursive param-
eter estimation algorithm called as weighted recursive 
least square (WRLS) [6]. Then, this fuzzy model and a 
predictive control method, which is called constrained 
receding horizon predictive control (CRHPC), is used 
to solve the steam generator water level control prob-
lem. The proposed controller has been applied to a 
nonlinear model of steam generator taken from [1, 15] 
to verify its real performance. 

UTSG model and the water level control problems 

UTSG model 

A pertinent UTSG model is desired to give physical 
ideas about the steam generating (SG) dynamics and 
be used as a simulator to replace actual plant testing 
for early evaluation of the controller. UTSG is a highly 
nonlinear, unstable and multivariable thermal-hydraulic 
process system. The three outputs of a UTSG which are 
usually measured are the water level y = Lw, the cold-

-leg temperature Tcl, and the secondary steam pressure 
Psat. The five disturbances acting upon the system are 
the hot-leg temperature Thl, the primary pressure Ppr, 
the primary mass flow rate qpr (always a constant within 
small random variations), the feedwater temperature 
Tfw, and steam flow rate v = qst. Changes in the power 
demand are translated to changes in the UTSG steam 
flow rate and this signal provides the persistent excita-
tion needed for effective system identification. The 
hot-leg temperature and the feedwater temperature 
are usually expressed as functions of the operating 
power, and given the current operating power level they 
can all be calculated in a straightforward manner. The 
feedwater flow rate u = qfw is the only control input to 
the UTSG. 

A UTSG simulator developed by Strohmayer in [15] 
and modified by Choi in [1] is adopted for the purpose 
of this work. The simulator was developed using a one-
-dimensional mass momentum and energy conservation 
equations. An integrated secondary recirculation-loop 
momentum equation has been incorporated into the 
simulator to calculate the water level. Figure 2 shows 
a block diagram of the UTSG simulator with the 
inputs, disturbances, and outputs and the PI control 
structure. 

Control problems in low power operation of UTSG 

The water level of the UTSG should be maintained 
within its lower and upper limits. Failure to maintain 
water level would lead to the following serious conse-
quences, including unintended plant shutdowns and 
system damage [14]: 

If the low water level exposes the U-tubes, the heat  –
transfer from the primary circuit to the secondary 
circuit will not take place efficiently. Consequently, 
primary circuit builds-up heat within itself, which 
causes the reactor to trip off. 
If the water level rises too high, the steam will con- –
tain more moisture (dryness < 99.9%). And the wet 
steam may damage the turbine blades; therefore, 
turbine trips off. 
Thus, it is extremely important that the water level 

of the UTSG be regulated within its limits. At present, 
a significant percentage of plant shutdowns and system 
unavailability are reportedly due to failures in UTSG 
water level control [7]. For the UTSG in a NPP, the main 
goal of control system is to maintain the water level at 
a desired value by regulating the feedwater flow rate. 
In general, there are several reasons that make control 
of the UTSG water level difficult. These issues can be 
summarized as follows: 

The UTSG is an open loop unstable system.  –
The plant dynamics are highly nonlinear. This is  –
reflected by the fact that the linearized plant model 
shows significant variations with operating power. 
The thermal effects, known as shrink and swell  –
phenomena, add to the complexity of the control 
problem because it tends to mislead simple feedback 
controllers. 
A problem in the water level control is the limited  –
amount of feedwater flow available for control. Re-
verse flow is not possible and feedwater flow could 
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not be higher than the pump rating. So, there is an 
explicit limitation in the magnitude of the control 
signal. 
The most critical and widely used feedback signals  –
are steam flow rate and feedwater flow rate. It is 
more often the case that these signals are not ac-
curate enough during start-up transients, and at 
low power operations. Under these conditions, 
flow rates are small in magnitude, and the process 
noise corrupts them beyond the limit of being useful 
feedback signals. 

Control system strategy and structure 

The control structure consists of two main parts: a 
dynamic fuzzy model, which calculates the predictions 
of the process outputs and works as a predictor, and a 
controller, which optimizes the process by minimizing 
the cost function and works as a predictive controller. 
The predictive fuzzy model can be developed by the 
Takagi-Sugeno fuzzy technique and can be taken as a 
collection of many linear models. Figure 1 represents 
the structure of the fuzzy model based predactive control 
(FMBPC) system. 

The simplest and most widely used approach for 
modelling nonlinear dynamics using TSK fuzzy model 
is extending the ARX model to form the so-called 
Nonlinear Auto Regressive with EXogenous inputs 
(NARX) model, 

(1)        y(t) = f(x(t)) 

where the element of the regression vector x(t) is given 
by: 

(2) x(t) = [y(t – 1), y(t – 2), …, y(t – m), 
     u(t), u(t – 1), …, u(t – n + 1)] 

They are composed of previousce m process outputs 
and previous n process inputs and their numbers depend 
on the process complexity.

Throughout this contribution, the unknown nonlin-
ear function f can be approximated by Takagi-Sugeno 
type fuzzy rules. The rule base comprises a collection 
of N rules of the form: 

(3) R(r): if x1 is X1
(r)   and  x2 is X2

(r)  xp is Xp
(r)   then 

        f (r)(x) = ar
Tx 

For identification of UTSG behaviour based on 
input-output data, we used a TSK fuzzy model and a 

subtractive clustering method (off-line identification). 
The identification signals were considered at different 
powers. 

To start the identification of the UTSG model, first the 
level control is stabilized by means of two PI controllers, 
one for the level error control and another one for the 
flow error control, using these tow controllers it is possible 
to regulate the water level at all specific power levels. The 
structure of the two PI controllers is shown in Fig. 2. 

Using this PI control structure, a prolonged simula-
tion of the UTSG plant was carried out using a sam-
pling interval of 1 s. Starting from the beginning of the 
simulation, the reference water level was intentionally 
changed in 0.5 cm steps in every 300 s time intervals, 
over the entire range of 20 → 24 → 16 → 10 cm, which 
takes 5100 s in total. Then, another 2 h was given for 
random reference changes. 

At all times, random steam disturbances were in-
troduced, the disturbance is formed by the addition of 
a pseudo random binary sequence (PRBS) and a white 
noise. The results of simulation under PI control at power 
level 50% are shown in Fig. 3. 

Similar data were obtained for all specific power 
levels, these data were collected in a sequence of 61 500 
samples, a set of 43 500 samples formed from the first 
8700 samples of each power level data, are used to train 
a TSK fuzzy model of the system. The remaining 18 000 
samples are used as validation set. The regression vector 
as in Eq. (2) was chosen using the following parameters, 
m = 2, n = 2. 

          x(t) = [y(t – 1), y(t – 2), u(t), u(t – 1), p(t)] 

where p(t) is the operating power level, estimated 
from the steam flow rate. The identified fuzzy model 
consists of 80 rules and has five inputs, they are four ele-
ments of the regression vector and the power level and 
one output. The linear parameters of this fuzzy model 
are adapted at each sample time (on-line adaptation). 
For this purpose, we use nonlinear least min square 
(NLMS) algorithm with learning rate η, that is equal to 
0.98. The on-line adaptation of the fuzzy model takes 
about 0.2 s on a Intel® Core™2 Due CPU 2.66 GHz-
-1.96 Gb of Ram. 

Fig. 1. Structure of the control system.

Fig. 2. Block diagram of the UTSG simulator and PI control 
structure.
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The predicted output using fuzzy model y(t + k⎪t) 
for k = 1, …, Np depends on the input and output values 
up to time t and the future control signals u(t + k⎪t) 
and these are the values to be calculated. The objective 
of the controller is to keep the output y(t) as close as 
possible to a set-point r(t). A general objective function 
is the quadratic form, mostly referred to as generalized 
predictive control (GPC) [3], the cost function used to 
evaluate the “distance” between the reference and the 
output makes use of a quadratic norm: 

(4)  

where Δu(t) = u(t) – u(t – 1) is the incremental con-
trol action, ρ is a weighting factor penalizing changes 
in the control actions. Once the optimal sequence is 
calculated, only the u(t⎪t) signal is implemented, for 
time t + 1 a new value of y is measured and a new input 
sequence is calculated. 

Then, the objective function J, can be written in a 
quadratic programing form and solved in MATLAB 
by using the quadprog.m function in the optimization 
toolbox. 

Implementation of the controller and performance 
results 

After some “trial and error” experimentation, the pre-
diction horizon, control horizon and delay are chosen 
30, 20 and 3, respectively and ρ = 10–2. The computation 
time of the control action was 0.5 s on a Intel® Core™2 
Due CPU 2.66 GHz-1.96 Gb of Ram. 

Figure 4 shows the water level variations for pow-
ers levels of 5, 10 and 20%. The results easily approve 
high capability of the proposed control for this tracking 
problem. This became more highlighted for lower power 
levels in which non-minimum phase behaviours of the 
steam generator are more observable. Furthermore, the 
proposed controller can still follow the desired trajecto-
ry for changes in power levels; this indicates how robust 
the controller is. The control signal is shown in Fig. 4. 
Figure 5 shows the performance of the proposed con-
troller at high powers, when the set-point (water level) 
and the steam flow rate change. These results indicate 
that the proposed controller has a good performance 
for tracking the set-point at high power level, too. As 
observed in Figs. 4 and 5, the amount of control efforts 
will increase as the power levels decrease. These figures 
show that system has a non-minimum-phase behaviour 
in low powers. Figure 6 compare the performance of 
the proposed controller and conventional PI controller 
optimized by a genetic algorithm [10] at power levels of 
5%. The proposed controller shows better performance 
under the step and ramp change of power. 

Conclusions 

In this work, an adaptive fuzzy model based predictive 
controller was developed to control the water level of 
nuclear steam generators. In this algorithm, a local 
linear fuzzy model of the steam generator is tuned at 

Fig. 3. Simulation under PI control at 50% power level. 
The first subplot shows the percent of feedwater flow rate 
change with respect to nominal value, the second subplot 
shows the error between water level reference and water level, 
integral of this error is shown in the third subplot. In the forth 
and fifth subplot, the difference between feedwater flow rate 
and steam flow rate and the integral are shown.

Fig. 4. Performance of proposed controller (low power).
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each time step, based on a TSK fuzzy model and a recur-
sive estimation algorithm to design a model predictive 
controller. Computer simulations show, the proposed 
controller has a good performance for tracking the 
step and ramp reference trajectory and has a good 
performance against the steam flow rate change. The 
proposed controller was compared to the PI controller 
and was known to have a better performance. 
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