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Abstract. Dead time parameter of Geiger-Müller (G-M) counters causes a great uncertainty in their response to the 
incident radiation intensity at high counting rates. As their applications in experimental nuclear science are widespread, 
many attempts have been done on improvements of their nonlinear response. In this work, response of a G-M counter 
system is optimized and corrected efficiently using feed forward artificial neural network (ANN). This method is simple, 
fast, and provides the answer to the problem explicitly with no need for iteration. The method is applied to a set of de-
caying source experimental data measured by a fairly large G-M tube. The results are compared with those predicted 
by a given analytical model which is called hybrid model. The maximum deviation of the corrected results from the true 
counting rates is less than 4% which is a significant improvement in comparison with the results obtained by the analyti-
cal method. Results of this study show that by using a proper artificial neural network structure, the dead time effects of 
G-M counters can be tolerated significantly. 
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Introduction 

Build-up of the positive ion space charges after each 
discharge process turns the G-M tube off for the next 
incident radiation measurement. A considerable amount 
of time should elapse before next avalanche can take 
place in the tube. Depending on the physical character-
istics of the detector, this time is of the order of 20 to 
300 μs. This dead period makes the G-M tube response 
as a nonlinear and complicated function of the incident 
radiation intensity. Several analytical models are pro-
posed for the correction. They are based on consider-
ation of two types of behaviour of G-M tubes to model 
the dead period of the detector, paralyzable and non-
-paralizable models [8]. These idealized models are based 
on the two types of behaviour for one or two degrees of 
freedom published elsewhere [4, 7, 9, 12–14]. Lee and 
Gardner [10] have suggested a hybrid model, which 
is the top accurate explanation of the dead time in G-M 
tubes. The proposed correction formula is: 

(1)  

where: m – observed counting rate, n – true counting 
rate, τp – paralizable dead time, τn – non-paralizable 
dead time, τp and τn are determined by fitting Eq. (1) 
to a set of G-M tube experimental data. Equation (1) 
is nonlinear and the true counting rate, n is determined 
by numerical root finding methods such as fixed-point 
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iteration method [3] choosing an appropriate initial 
guess. Equation (1) can be rearranged as: 

(2) ni = F(ni–1) = mi(1 + τnni–1) exp(τnni–1) 

As an example of numerical solution of the implicit 
equation, substituting the generic values for τn = 100 μs, 
τp = 100 μs, mi = 1000, and the initial value of the true 
counting rate, ni–1, equal to mi, then 22 iterations are 
needed to calculate the true counting rate equal to 1283. 
One of the difficulties of the analytical models is that, 
they do not estimate the true counting rate explicitly. 
Therefore, software based instrumentation is needed 
for on-line correction of the observed counting rates. 
The only convergence criterion for fix-point iteration 
method is |dF(n)/dn| < 1, if the first approximation of n 
is chosen truly [3]. In the next section, it is shown that at 
high counting rates, the convergence of fixed-point itera-
tion method for the arrangement of Eq. (2) encounters 
a problem; however the convergence condition is softly 
satisfied. Another source of error in using the analytical 
methods is the postulation of a simplified model for the 
dead time process whereas in practice it is more compli-
cated. Therefore, any correction based on these models 
is considered as an estimation of the true count. 

It is desirable to use the G-M tubes over a wide 
range of counting rates. At low count rates, increasing 

the measurement time is the only possible solution to 
achieve the required statistical accuracy. In the op-
posite extreme, at high counting rates, two strategies 
are useful: 

Decreasing the dead time of the counting system.  –
Using a proper electronic instrumentation can re-
duce the dead time losses [8]. 
Correction of the dead time losses using theoretical  –
dead time models. These models need experiments 
to measure the G-M tube parameters using curve 
fitting methods. Two popular experiments are two-
-source method and decaying source method. The 
latter one is more accurate because it covers the en-
tire range of the counting rates but it needs a suitable 
activated foil as well as being time consuming. Al-
though two-source method is simple, it examines the 
G-M tube in two counting rates only. Therefore, the 
correction may contain a systematic error. For accu-
rate measurements, decaying source experiment and 
efficient correction of the observed counting rates 
using theoretical methods are inevitable. 
In this paper, the main concern is about the theo-

retical correction of the dead effects of the observed 
counting rates using artificial neural network (ANN). 
A detailed description of the method is explained in 
the next sections. 

Fig. 1. Experimental setup of the G-M detector counting rates measuring system. 
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Experimental setup 

Decaying source experiment is performed to produce 
the experimental data for examination of the correction 
methods. Several practical considerations are important 
for decaying source method. First of all, the half-life 
of the radioactive source should not be too long or too 
short. Therefore, full counting rate range of interest can 
be measured in a reasonable time. Secondly, the half-life 
should be known accurately. Finally, the radioisotope 
should be pure with a single decaying mode. 55Mn with 
half-life of 2.578 h is a perfect activation foil for the 
experiment. 

Tehran Research Reactor (TRR) is facilitated with a 
remote irradiation system [15]. A 55Mn activation foil with 
purity of 99.99% is activated by the irradiation facility. 
The activated source is placed in front of ZP-1210 G-M 
tube detector [6] surrounded with suitable lead shields. 
Figure 1 shows the setup of the experiment. To have a 
fixed geometry of the detection system during three days 
of the measurement, both activated foil and the detector 
package are placed in a polyethylene fixture. 

To minimize the interference of the noise and stray 
capacitances, a filter gain buffer amplifier is implement-
ed in the detector polyethylene housing. The LM6171 is 
a high speed low power low distortion voltage feedback 
operational amplifier which is perfect for amplifica-
tion of the output pulses of the detector. The 2.7 and 
1 kΩ resistors set the gain of the amplifier equal to 3.7. 
By this method, loading effects of the coaxial cable and 
the data acquisition system onto the detector pulse shape 
are avoided. The noise of the output signal of the ampli-
fication circuit is less than ±12 mV. This feature allows 
a very good signal to noise ratio more than 53 dB for 
accurate post analyses. A detailed description of nuclear 
instrumentation is published elsewhere [8]. 

During the three days of the measurement, the out-
put signal of the detector is recorded by the Advantech 
high speed multifunction PCI card [1]. The sample rate 
of 1 MS/s is sufficient. Data acquisition and off-line data 
reduction is performed using MATLAB software [11]. 
Other details of the experimental setup are illustrated 

in Fig. 1. This instrumentation allows proper off-line 
investigation on the recorded readout of the detector. 

Two profound changes in output signals of G-M 
detectors occur at high counting rates. Firstly, due 
to pulse pile up, the base-line or direct current (DC) 
level of the signal is shifted. For the circuitry shown in 
Fig. 1, the shift in base-line is upward. Secondly, the 
amplitude of the short time interval pulses is weak. 
These vicissitudes directly act on the operating point 
of the detector, therefore causes significant losses at 
high counting rates [8]. A typical recorded pulse train 
of the detector output is illustrated in Fig. 2. Three 
pulses do not cross the discrimination level, so they are 
lost. This figure shows that the number of valid pulses 
is a function of the set point for discrimination level. 
The 2 V discrimination level is chosen. Dashed line in 
Fig. 3 shows the fitted curve of the true counting rate 
to the experimental data. 

Feed forward artificial neural network 

For the observing counting rates of a G-M, feed forward 
neural network structure is the appropriate configura-
tion. The chosen structure of the neural network is 
shown in Fig. 4 which is optimized by iteration on 
different structures. This is a three-layer single-input 
single-output configuration. The number of neurons 
in the output layer is equal to the number of outputs of 
the network. Input layer consists of five neurons equal 
to the hidden layer. Because the input data are normal-
ized between zero and unity, sigmoid transfer function 
is chosen. Each layer is connected to the next layer 
through a tree of weights. In addition to weighted in-
puts, a constant bias is also connected to each neuron of 
the network. Weights and biases are the variables 
which are adjusted during learning process. Input is m, 
target value is n (true counting rate), and the output 
of the network is the predicted true counting rates. 
Figure 4 shows more on the chosen structure. The rela-
tion between input and output of the network is shown 
by Eq. (3): 

Fig. 2. Schematic of pulse train at high counting rates. The 
discrimination level is set to 2 V. Due to dead time effects, 
some pulses do not cross the discrimination level, i.e. they are 
not recorded as valid events.

Fig. 3. Experimental data by the decaying source method. 
Dashed line shows the true counting curve and points show 
the observed counting rates. 
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(3) Network Output = Pure Line (Sigmoid (Sigmoid 
               (mW1 + B1)W2 +W2)W3 + B3) 

W1 → W3 and B1 → B3 are the weight and bias vec-
tors of the network respectively. Sigmoid and Pure 
Line transfer functions are expressed by Eqs. (4) and 
(5) [5]. 

(4) 

(5)          Pure Line(Net) = Net 

Pure Line neurons are used in the final layer of 
multilayer networks to make a summation on all outputs 
of the previous layers. This structure is trained by the 
experimental data shown in Fig. 3 using the Levenberg-
-Marquardt learning algorithm. The programming is 
developed using MATLAB software. 

Results and discussion 

The neural network explained in the previous section 
is used to correct the nonlinearity response of ZP-1210 

G-M detector. To see the effectiveness of the method, 
the correction is also applied using the hybrid model. 
Equation (1) is fitted to the experimental data via 
Gauss-Newton algorithm. The calculated paralizable  
and non-paralizable dead times of the model are 9.08 
and 30.63 μs, respectively. The neural network and the 
hybrid model correction results are shown in Fig. 5. 
The observed counting rates and the true counting 
curve are also included in this figure. It is noticeable 
that the dead time of the G-M tube reported by the 
manufacturer [6] is 200 μs, while results of this study 
show smaller values. 

Figure 5 clearly shows that the neural network gives 
a very good response, which is nearly close to the true 
counting curve. Up to 35 000 cps, the slope of the ob-
served counting rates is gentle for correction purposes. 
Therefore, a favourable response is met. Actually, any 
correction method maps the observed counting rates 
onto the true counting rates. More than 35 000 cps,  
the slope of the observed counting rates is very slight. 
Therefore, any little statistical fluctuation in the counts 
causes around 4% deviations in the neural network 
response. This is a systematic error of G-M counters. 
The hybrid model is more sensitive to the fluctuations; 
because its response shows a considerable deviation 
from true counting curve between 35 000 and 40 000 cps. 
For higher counting rates, this model does not converge 
into the answer considering n1 equal to m as the initial 
guess for n. These important features of the results are 
carefully reflected in the next two figures. 

Figure 6 compares the relative errors of the meth-
ods. It is evident that the neural network relative error 
is small within a reasonable range less than 4%. The 
neural network error has a uniform plus or minus rela-
tive error distribution which is mostly related to the 
statistical fluctuations of the observed count rates and 
the systematic. At very low and high counting rates, the 
relative error of the hybrid model increases up to 12%. 
At high counting rates, the hybrid model overestimate 
the answer as well as low counting rates. More than 
40 000 cps no convergence for implicit iteration of 
Eq. (2) is seen. The convergence rule as described ear-
lier is |dF(n)/dn| < 1 if the initial guess, n1, is chosen 
truly. Note that the recursive formula (Eq. (2), n = F(n) 
can be formed in an ultimate number of ways. There-

1Sigmoid (Net)
1 exp( Net)

=
+ −

Fig. 5. Comparison of results for neural network and hybrid 
model correction. 

Fig. 4. Structure of the feed forward neural network for G-M dead time correction. 
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fore, a more suitable arrangement might be derived to 
achieve an enhanced numerical solution of the hybrid 
model [2]. For the choice of F(n) shown in the form of 
Eq. (2), dF(n)/dn is: 

(6)  

Equation (6) and the number of needed iterations 
are depicted in Fig. 7. More than 45 000 cps of the 
true counting rates, no convergence exists because the 
condition of |dF(n)/dn| < 1 is not satisfied. Around 
40 000 cps, the number of needed iterations rises dra-
matically. Although the condition of |dF(n)/dn| < 1 
is softly satisfied, but no convergence is exists for true 
counting rates higher than 40 000 cps. The hybrid model 
can be forced to be converged by better approximation 
of n1 or using other ultimate arrangements of F(n). 

Conclusion 

G-M detectors are widely used in different radiation 
measuring devices. The paralizable and non-paralizable 

dead time parameters of the present G-M counter 
system are 9.08 and 30.63 μs, respectively. A three-
-layer feed forward neural network structure is used for 
correction of the observed counting rates. Both neural 
network method and hybrid model are applied to the 
experimental data set measured by decaying source 
method. The correction results obtained by the neural 
network were compared with those from hybrid model, 
commonly used for correction. The maximum relative 
error at high counting rates for the neural network 
and hybrid model are 4 and 12%, respectively. Also, a 
major benefit of the neural network, as compared to 
the implicit iteration of the hybrid model, is its explicit 
prediction of the true counting rate. In addition, the 
neural network can be trained to respond to the physi-
cal behaviour of any specific G-M counter system while 
the hybrid model is a simplified description of the 
dead time process. The problem of dead time is not 
limited only to the G-M detectors or radiation detec-
tors. Therefore, this paper is also useful in other fields 
of detections. 
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