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Introduction 

The Geiger-Müller (G-M) counters exist in nuclear 
physics for already almost 100 years. They have a range 
of applications (e.g. survey dosimeters). Because they 
need a simple and low cost electronic circuitry, these 
detectors are perfect devices when there is no need 
for incident radiation energy measurement. Also, the 
problem of finding dead time corrections, at least in 
the first two approximations, mentioned in the paper, 
appeared very soon and became typical student’s prob-
lem already for a few decades. 

Nonlinear response to the radiation intensity at high 
counting rates is the only drawback of these detectors. 
This is due to the dead time effects. Hence, different 
investigations have been conducted to tolerate this 
problem. Two extreme dead time models of G-M de-
tectors are paralizable and non-paralizable models [6]. 
Efforts have been made to extend the range of useful-
ness of the detector [1, 4, 5, 7, 9–11]. A hybrid model, 
which shows a good consistency with experimental 
data, is proposed by Lee and Gardner [8]. Because of 
complexity of the dead time process in G-M detectors, 
this model also shows significant deviations at high 
counting rates. This paper is focused on error reduction 
of hybrid model formula based on its nonconformities 
to the experimental data. 

Of course, the presented formulae extend the 
applicability of G-M counters to higher intensities. 
Nevertheless, the question is, why it should be impor-
tant? Usually, any correct monitoring system should 
work in linear regime meaning that the achievement 
of this goal is very simple (e.g., increase of the distance 
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between the radioactive source and G-M counter, or 
diminish activity of the source or, place the counter in 
a shield equipped with a small collimator). In addition, 
in the situation where we are dealing with an extremely 
large diapason of intensities, we can use rather few 
detectors of different efficiencies. When standard moni-
tors working normally in linear regime are unexpectedly 
highly irradiated, the readout of G-M counters might 
show a great systematic error. For example, during 
nuclear reactor accidents real radiation intensity must 
be evaluated from detectors working far out of their 
normal regime. Therefore, very detailed mathemati-
cal analysis of rather abnormal working regime of the 
detector would be required for the readers. 

Hybrid model 

Figure 1 illustrates three different models. Figure 1a 
indicates the non-paralizable dead time behaviour. A 
fixed duration, τn, is assumed to follow each true event 
which occurs during live period of the detector. Through 
τn, no interaction can start an avalanche in the detec-
tor. Therefore, three interactions are occurred, but 
two pulses are generated. One of them is lost due to 
the non-paralizable dead time effect. Figure 1b shows 
paralizable dead time behaviour. Paralizable dead time, 
τp, is refreshed by any incident radiation, which interacts 
during τp. Note that the notation “Tc” means true count, 
which can be recorded by the detection system, and the 
notation “Lost” refers to interactions, which are lost 
because of dead time of the detector. Figure 1c shows 
hybrid model suppositions. Each detection process starts 
with a non-paralizable dead time and is followed by the 
paralizable one. The detector will not record any interac-
tion during non-paralizable dead time. The total process 
is refreshed by any interaction during paralizable dead 
time. Equation (1) indicates hybrid model formula [8]. 
Its constant parameters are determined by curve fitting 
of this equation to a set of experimental data. 

(1) 

where: m – observed count rate, n – true count rate, τp – 
paralizable dead time, τn – non-paralizable dead time. 

Experimental data

To check the validity of the results, experimental veri-
fication is essential. Experimental data of a decaying 
source are used for this purpose. An activated Mn56 
gamma source is placed in the front of a G-M tube and 
measurements are performed every ten-second [8]. The 
experimental data are shown in Fig. 2. Vertical axis of 
the figure is in a logarithmic scale. Noticeably, the half-
-life of Mn56 is 2.578 h (λMn56 = 7.4686 × 10–5 s–1). For 
decay processes, the relation between the true count 
rate, N(t), decay constant of the radioactive source, λ, 
and the background level, NBG, is given in Eq. (2) 

(2)  N(t) = No e–λt + NBG 

No and NBG are the constants which are determined 
by fitting of this equation to the experimental data. 
Dashed line in Fig. 2 shows N(t), the fitted curve to the 
experimental data. It is clearly seen that the observed 
count rates are deviated from the true counting curve, 
N(t), due to the dead time effects during the first 5 × 
104 s of the measurements. This experimental data and 
the fitted curve are the bases of the validations given in 
the following sections. Further information about de-
caying source experiment is given elsewhere [7, 8]. 

Methods and results 

Improved dead time formula (IDTF) 

Hybrid model formula (Eq. (1)) is a two-degree of 
freedom equation. In fact, dead time phenomenon is a 
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Fig. 1. Illustration of different dead time models behaviour. 
(a) non-paralizable model, (b) paralizable model, (c) hybrid 
model. 

Fig. 2. Bullet points are experimental data of a decaying source. 
The dashed line is fitted curve of Eq. (2) to the experimental 
data (No = 6.11 × 104, NBG = 0.932, λ = 7.4686 × 10–5 s–1). 
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complicated process. Therefore, details of the process 
cannot be described by simple assumptions of hybrid 
model shown in Fig. 1c. Figure 3 shows the plot of the 
absolute error of hybrid model. The curve is mostly 
similar to a linear line. 

In order to have a better description of the dead time 
process in G-M tubes, an improvement is required for hy-
brid model regarding its deviation from experimental data. 
Equation (3) shows the basic assumed relation between 
the hybrid model formula and its improved form. 

(3)  mIDTF = mHybrid + FD 

The last term, FD, is the remainder or absolute 
error of hybrid model (Fig. 3). The shape function of 
the remainder is linear. Therefore: 

(4)        FD = θ n 

In this equation, θ is a constant. Now, formulation 
for the dead time can be rewritten as: 

(5)  

Parameters of this equation can be estimated by using 
a curve-fitting method. Related material or helps on nu-
merical solution of the problem might be available upon 
request for the readers. Figure 4 shows the fitting curves 
of hybrid formula and IDTF formula (Eqs. (1) and (5)) 
with the experimental data. Fitted parameters are shown 
by the figure. Obviously, the improved form of hybrid 
model shows a general agreement with the experimental 
data. A better comparison of the models is shown in 
Fig. 5. Vertical axis of this figure is the point-to-point divi-
sion of the model calculated count rate by the experimen-
tal data. The ideal curve must be uniform over the entire 
rate range of count rates. Below 10 cps, due to the large 
statistical fluctuations, great deviations are illustrated. 
This is a systematic error. Both models show nearly the 
same response up to 104 cps. At high-count rates, hybrid 
formula is underestimated. It declines to less than –40% 
at 6 × 104 cps. The IDTF has a good agreement with the 
experimental data in the whole range. 

Numerical analysis 

In previous section, the hybrid model and its modified 
form were compared based on the data from a decaying 
source experiment. Constant parameters of the formulae 
were determined by curve fitting. This section assesses 
the numerical aspects of the problem for correction 
purposes. 

As it was described previously, the observed counting 
rates of G-M tubes show a nonlinear response to the inci-
dent radiation intensity, which must be corrected by using 
an appropriate dead time correction method. Therefore, 
in practice, an iterative method of numerical solution 
must be applied to the implicit formulae. Hybrid formula 
and IDTF are also implicit formulae. A popular method 
for solving nonlinear implicit equations is the fixed-point 
iteration method [2, 3]. Rearranging Eq. (1), the recursive 
formula for hybrid model can be written as 

Fig. 3. Absolute error of hybrid model.

Fig. 4. Fitting curves of hybrid model and IDTF to the ex-
perimental data. 

Fig. 5. Point-to-point division of model calculated count rate 
by the observed count rate. 
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(6)  

Similarly, the improved hybrid model formula can 
be rearranged as 

(7)  

In these equations, i is the index of the iteration 
number. For i = 1, no should be initialized. The value 
of m is set as the initial point. 

The convergence of the models is investigated by 
using these recursive formulae. The results are exhibited 
in Fig. 6. Because the slope of the experimental data 
at high-count rates (around 1.5 × 104 cps) is very small 
(Fig. 4), the numerical correction shows instability at 
these regions. Considering the number of needed it-
erations to reach the convergence criterion, the hybrid 
formula and IDTF show the same behaviour except for 
high-count rates. A slightly better performance at high-
-count rates is seen for IDTF. An online application of 
dead time correction of G-M counters needs calculation 
of the answer immediately after each measurement. 

Conclusion 

Based on the absolute error shape function, the hybrid 
formula was improved. In addition, validation of the 
improvement was checked by using a set of experimen-
tal data of a decaying source. The results were given in 
Figs. 3 to 5 elaborately. The improved hybrid model 
showed a good agreement with experimental data, 
while the deviation for hybrid model decreases to less 
than –40% at 6 × 104 cps. Numerical assessment of the 
models was performed by using fixed-point iteration 
method. The results were shown in Fig. 6. The number 
of needed iterations to reach the convergence criterion 
is important because it directly relates to the amount 
of time to find the solution by the numerical method. 
A little better behaviour is seen by IDTF at high-count 
rates. 
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Fig. 6. Number of numerical iterations needed for correc-
tion. 
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