Mössbauer spectroscopy of reduced forms of a Fe-tetraphenylporphyrine complex

Tomasz Kaczmazryk, Iwona Rutkowska, Kazimierz Dziliński

Abstract. Molecular and electronic structure changes during successive reduction of a Fe-tetraphenylporphyrin chloride [Fe(III)(TPP):Cl] complex are reported on the basis of Mössbauer spectroscopy and DFT calculations. It is established that the attachment of additional electrons to a neutral Fe(III)(TPP):Cl molecule leads to significant shortening of Fe-N distances at the first stage of the reduction Fe(III)(TPP):Cl → Fe(II)(TPP) and lengthening of these bonds at the second stage Fe(II)(TPP) → Fe(I)(TPP). Changes of other bond lengths of the porphyrin ring also appear but in less degree. Interaction of Fe(II) and Fe(I)(TPP) with tetrahydrofuran (THF) solvent is considered. Electron configuration of Fe(II)(TPP) corresponds to intermediate-spin (S = 1) state and in the case of Fe(I)(TPP) low-spin state (S = ½) is observed. Electron density distribution in Fe(II)- and Fe(I)(TPP) complexes, in association with Mössbauer data, is analyzed. Good correlation between experimental and theoretical results was obtained.

Key words: DFT calculations • electronic structure • iron-(tetraphenyl)porphyrin • Mössbauer spectroscopy • reduction process

Introduction

Iron porphyrins are a class of biologically important macromolecules which perform many distinctive functions. They take part in reversible oxygen transport, reversible electron transfer in cytochromes and they are involved in irreversible transformations of substrates in peroxidases [1]. Iron porphyrins are also interesting objects for coordination chemistry because of a variety of oxidation and spin states of the central Fe atom which can be coordinated with the porphyrin ring and different axial ligands. Central position of the iron atom in tetrapyrrole structures corresponds to its significant effect on chemical and physical properties of these complexes. Electron configuration at the Fe atom is sensitive to molecular structure of the surrounding ligands:porphyrin and axial [2]. Apart from the biological aspects, the molecular structure and physical properties of iron porphyrins promote these complexes for application in such contemporary technologies as non-linear optics, molecular semiconductors, liquid crystals, and so on [3]. Reduced forms of iron porphyrins play an essential role as intermediate products in the reduction–oxidation bioprocesses which modulate the course of reactions running with participation of the electron transfer. The reduction process of iron porphyrins runs in a more complex way in comparison, for example, with the Mg- or Zn-porphyrins [4], because additional electrons, joined to an iron porphyrin molecule can occupy d-orbitals of the...
of THF molecules from iron ions of porphyrin rings. THF solvent was not removed completely from the layers because such ‘dry’ layers destroy and it is not possible to perform Mössbauer measurements if samples have to be mounted in vertical position. So, the Mössbauer spectra were recorded for two types of complexes: (a) pure Fe(TPP):(THF)$_2$, and (b) the mixture Fe(TPP):(THF)$_2$ + Fe(TPP). Pure Fe(II) (TPP) and Fe(I)(TPP) products of the reduction reaction (without solvent molecules) are marked as ‘dry’ complexes. The layers contained about 4×10^{-4} g/cm2 of 57Fe. The parameters of Mössbauer spectra were found by fitting the experimental spectra to Lorentzian lines using the NORMOS program package as done previously [16]. DFT calculations of Mössbauer parameters were carried out using the Amsterdam Density Functional (ADF) program package [8]. Molecular geometries of the Fe(II)(TPP) and Fe(I)(TPP) complexes were optimized to the energy minimum and next used for calculations. THF molecules of the solvent were omitted in the theoretical study because of some problems with convergence processes during calculations. It is important to use the same basis set, same exchange correlation functional, and same integration accuracy, if results of calculations of different molecules are to be compared. In our case, all the calculations were done with OLYP functional (Hady exchange and Lee–Young–Parr correlation potentials) and TZP (triple dzeta plus polarization) Slater type orbitals as basic functions, including the scalar relativistic ZORA treatment [8].

Results and discussion

Mössbauer spectrum of the trivalent chloride Fe(III) (TPP):Cl complex, which is a substrate of the reduction reaction, is shown in Fig. 1. The shape of this spectrum and its parameters are typical for the high spin state ($S = 5/2$) of iron porphyrins [17]. Although, it looks like single-line pattern, detailed analysis indicates asymmetrical doublet. To describe quantitatively the asymmetry in the Mössbauer spectra we have introduced an asymmetry parameter W_2, which is equal to the linewidth ratio of
the higher energy absorption line of the doublet (the right-side line) to the lower energy absorption line (the left-side line of the doublet). This assignment is acceptable because of the equal areas under the components of the doublets. Such a kind of the asymmetry is characteristic for the temperature dependent relaxation processes [18–20] and positive sign of the \(V_{zz} \) component of electric field gradient (EFG) tensors. The positive sign of the \(V_{zz} \) indicates that Fe ion has more negative charge in the porphyrin plane than the perpendicular direction to it [17].

At the first stage of the reduction process, divalent Fe(II)-porphyrins are generated which can be diamagnetic or paramagnetic with integer spins. The recorded Mössbauer spectra of the Fe(II) reduction products are slightly asymmetrical but they can be fitted by symmetrical doublets of Fe(II)-porphyrins and the asymmetrical doublet from remains of the Fe(III)(TPP):Cl complex. Two Mössbauer spectra, recorded at this stage of the reduction process, shown in Fig. 2, correspond to the Fe(II)(TPP):(THF)\(_2\) complex containing two THF molecules as axial ligands (the left one) and to the mixture Fe(II)(TPP):(THF)\(_2\) + Fe(II)(TPP) (the right one). In the former case, the Fe(II) ion has electron configuration corresponding to the high spin state (\(S = 2 \)) and for the pure, without THF molecules, Fe(II)(TPP) – the intermediate spin state (\(S = 1 \)) is expected [14, 15]. Values of the Mössbauer parameters differ significantly for these two divalent iron porphyrins. Theoretical QS values calculated with the DFT method (Table 2) are in very good agreement with the experimental data. Very good agreement was obtained also for ionization energy (Table 3). It is widely assumed that the energy of HOMO corresponds to the ionization potential and the energy of LUMO is used to estimate the electron affinity [23].

Next stage of the reduction process leads to Fe(I)(TPP) complexes. The Mössbauer spectra show symmetrical doublets (Fig. 3). Like in the
case of the divalent complex, two spectra have been analyzed. It is not clear at the moment, one or two THF molecules are joined to the Fe(I) ion. Electronic configuration indicates low-spin state ($S = \frac{1}{2}$) of the Fe(I) ions. There is not much literature data for the univalent iron porphyrins, and some of the existing data is controversial. A good correlation between experimental and theoretical data was obtained also for the Fe(I)(TPP) reduction product, with respect to the quadrupole splitting (QS) and to the electron affinity energy (Table 4). It should be noted that the attachment of additional electrons to a neutral Fe(III)(TPP):Cl molecule leads to significant shortening of Fe-N distances at the first stage of the reduction Fe(III)(TPP):Cl \rightarrow Fe(II)(TPP) and lengthening of these bonds at the second stage Fe(II)(TPP) \rightarrow Fe(I)(TPP) (Tables 2 and 4). Changes of other bond lengths of the porphyrin ring also appear but in less degree. The ΔE values correspond to the total energy differences between the ground state and states corresponding to other electron configurations of the iron ions, considered here as excited states.

The reduction process can also run at higher stages, but detailed product determination of such a reaction is a rather difficult task and it needs further investigation.

Conclusions

Combination of experimental data with theoretical calculations is an effective approach to study electronic structure, even in the case of relatively complex systems like iron porphyrins.

We have obtained very good correlation between the experimental and theoretical results concerning the Mössbauer parameters and electronic structure of the reduced forms of iron-tetraphenylporphyrins.

References

Mössbauer spectroscopy of reduced forms of a Fe-tetraphenylporphyrine complex

