

The role and position of iron in 0.8CaZrO₃-0.2CaFe₂O₄

Jacek Szczerba, Edyta Śnieżek, Paweł Stoch, Ryszard Prorok, Ilona Jastrzębska

Abstract. The aim of the study was to characterize the 0.8CaZrO₃-0.2CaFe₂O₄ composite structure with particular emphasis on the role and position of iron in the function of sintering temperature. The paper presents the results of ⁵⁷Fe Mössbauer effect at room temperature. It was found that the increase of sintering temperature causes an increase in the amount of incorporated iron ions in the CaZrO₃-crystal structure. Based on Mössbauer spectroscopy analysis, it was found that three different environments of Fe³⁺ ions were observed in the obtained materials. Two of them corresponded to CaFe₂O₄ phase and one was associated with the substitution of Zr⁴⁺ by Fe³⁺ in the CaZrO₃ structure.

Key words: calcium ferrite • calcium zirconate • Mössbauer spectroscopy • perovskite • spinel

Introduction

CaZrO₃ is a member of perovskite, which has two polymorphs. At temperatures lower than 1750°C, an orthorhombic phase is stable, where Ca²⁺ ions are situated between slightly deformed ZrO₆ octahedrals. At temperatures higher than 1750°C, cubic phase is stable [1, 2]. High purity CaZrO₃ can be obtained by the arc melting technique. The fused CaZrO₃, with strong Zr-O covalent bonding and almost pure Ca-O ionic bonding, is poreless and has the density close to the theoretical one [3].

CaZrO₃, which is the only chemical compound in the CaO-ZrO₂ binary system, is characterized by high melting point (2345°C), thermal shock resistance, high strength and corrosion resistance against alkali oxides and cement clinker. Furthermore, CaZrO₃ has been wildly investigated because of its electrical properties. $CaZrO_3$ is a p-type semiconductor. Modified by some trivalent cations (e.g. In^{3+} , Ga^{3+} and Sc^{3+}) is a protonic conductor in hydrogen atmosphere. Small excess of zircona or calcia in CaZrO₃ structure cause oxygen ion conductivity. The analogous situation occurs in the case of Al₂O₃, MgO, Y₂O₃ substitution. Therefore, $CaZrO_3$ is a material being used as, for example, mechanical filters, resonators, capacitors, and refractory materials [4–10]. CaZrO₃ relatively easily incorporates actinides into its crystal structure. CaZrO₃ is considered as a host material for spent nuclear fuel immobilization [11].

J. Szczerba, E. Śnieżek[⊠], P. Stoch, R. Prorok, I. Jastrzębska

Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630, E-mail: esniezek@agh.edu.pl

Received: 18 June 2014 Accepted: 2 November 2014 CaFe₂O₄ with spinel structure is stable up to 1228°C [12]. Crystal structure of CaFe₂O₄ is similar to the one formed in perovskite compounds as in CaZrO₃ [13]. Therefore, it is interesting to study the 0.8CaZrO₃-0.2CaFe₂O₄ composite, which is the combination of perovskite and spinel structure compounds. This work is focused on determining the position of the iron in the studied composite depending on the synthesis temperature.

Experiment

The 0.8CaZrO₃-0.2CaFe₂O₄ composite was synthesized by solid-state reaction, starting from pure CaCO₃, ZrO₂, and Fe₂O₃ commercial powders. Synthesis of the material was achieved by a two-step heating process. The first step at 1200°C was calcination. The recovered material was grounded and pressed under 30 MPa before the second step heat treatment at 1400°C and 1700°C with the 10 h soaking time at each temperature.

The X-ray diffraction analysis was performed at a room temperature, using monochromatic Cu-K α radiation (Philips Panalytical X'Pert-Pro MPD diffractometer) in order to determine the phase composition of the fired materials. The crystal structure parameters were obtained using the full-profile Rietveld method [14] implemented in the FullProf software package [15].

The ⁵⁷Fe Mössbauer effect measurements were performed using the standard technique at room temperature in transmission mode, using a conventional constant-acceleration spectrometer and a 25 mCi ⁵⁷Co source in Rh matrix. The velocity scale was calibrated using α -Fe foil. Spectra were fitted to Lorentzian lines using the non-linear least square method.

Results and discussion

Figure 1 shows X-ray diffraction (XRD) patterns and theoretical fits of the samples sintered at 1400° C and 1700° C. It was found that the main crystalline phases were CaZrO₃ (*Pcmn*) and CaFe₂O₄ (*Pnam*).

Fig. 1. X-ray diffraction patterns and the Rietveld analysis of the samples sintered at 1400°C and 1700°C.

Parameters of both the crystalline phases are summarized in Table 1. With the sintering temperature increases the amount of the CaFe₂O₄ phase at the cost of CaZrO₃, which could indicate the dissolution of CaZrO₃ by CaFe₂O₄ liquid phase. At both temperatures, a reduction of unit cell volume of CaZrO₃ is observed. It may be caused by diffusion and incorporation of Fe³⁺ cations, which replaced bigger Zr⁴⁺ cations in the perovskite structure. An effective ionic radius of Zr^{4+} (0.72 Å) is considerably bigger than Fe³⁺ (0.55 Å) [16]. Thus if part of Zr is substituted by Fe, it should decrease the crystal structure parameters. The opposite effect is observed in the case of CaFe₂O₄. The diffusion and incorporation process are thermally activated. Therefore, at 1700°C in comparison to 1400°C, the lowest parameters of unit cell were obtained.

Table 1. Crystal structure parameters of $CaZrO_3$ and $CaFe_2O_4$ phases (a, b, c – unit cells parameters, V – unit cell volume, A – phase share percentage)

Parameters	Sintering temperature		ICDDS			
	1400°C	1700°C	JCPD8			
$CaZrO_3$ (<i>Pcmn</i>)						
a [Å]	5.586(1)	5.582(1)	5.5912			
b [Å]	8.011(1)	8.007(1)	8.0171			
c [Å]	5.754(1)	5.754(1)	5.7616			
V [Å ³]	257.54(1)	257.22(1)	258.26			
A [%]	92.6(9)	88.0(9)				
	CaFe ₂ O ₄	(Pnam)				
a [Å]	10.756(9)	10.732(9)	10.705			
b [Å]	9.262(4)	9.261(4)	9.23			
c [Å]	3.027(4)	3.026(4)	3.024			
V [Å ³]	301.56(7)	300.86(7)	298.79			
<u>A [%]</u>	7.4(6)	12.0(6)				

Component	A [%]	IS [mm/s]	QS [mm/s]
		1400°C	
1	63.7	0.338(4)	0.647(7)
2	28.5	0.364(1)	0.322(5)
3	7.8	0.437(5)	0.643(8)
		1700°C	
1	54.4	0.313(16)	0.627(10)
2	26.1	0.353(1)	0.305(13)
3	19.5	0.429(9)	0.633(10)

Table 2. The hyperfine interaction parameters (A – area of the subspectra, IS – isomer shift, QS – quadrupole split) of the sample prepared at 1400° C and 1700° C

The results of the Mössbauer spectroscopy measurements are shown in Fig. 2 and are summarized in Table 2. It was found that the obtained spectra are the result of three components, which correspond to the three different neighborhoods of Fe^{3+} ions. In the case of components 1 and 2, the hyperfine interaction parameters correspond to pure CaFe₂O₄ [17], where iron occurs in the octahedral and tetrahedral sites (approximately 2:1 contribution). In contrast, component 3 is derived from iron, which was incorporated into the CaZrO₃ structure and replaces zircon in octahedral sites. The substitution of Zr⁴⁺/Fe³⁺ causes an imbalance of a cell charge. This is compensated by the presence of an oxygen octahedron distortion in the middle of which Fe³⁺ cations are situated, or by the removal of one oxygen unit from an octahedron corner. Its coordination number declines from 6 to 5. This effect causes the appearance of the larger electric field gradient acting on the Fe³⁺ ions, which leads to an increase of quadrupole splitting (QS) parameter. The increase of the sintering temperature causes the increase in

Fig. 2. ⁵⁷Fe Mössbauer effect measurements at room temperature of the sample sintered at 1400°C and 1700°C.

incorporation of Fe³⁺ ions into the CaZrO₃ structure from approximately 8% to 20%.

Conclusions

The aim of the study is to characterize the 0.8CaZrO₃-0.2CaFe₂O₄ composite structure based on calcium zirconate with calcium ferrite in the matrix, with particular emphasis on the role and position of iron, as a function of temperature synthesis. Parameters of both the obtained crystalline phases: CaZrO₃ and CaFe₂O₄ are slightly different, compared to the reference data, which may indicate the incorporation of iron in the CaZrO₃ crystal structure and zirconium in CaFe₂O₄. With the increase of the sintering temperature, a gradual dissolution of CaZrO₃ in the CaFe₂O₄ liquid phase is observed. It was found that the sintering temperature increase causes an increase in the incorporation of iron ions into the crystal structure of calcium zirconate from approximately 8% to 20%. The study revealed that the CaZrO₃ structure is able to embody up to about 2 mol% of Fe³⁺.

Acknowledgment. The work was supported by the grant no. INNOTECH-K2/IN2/16/181920/NCBR/13.

References

- Dravid, V. P., Sung, C. M., Notis, M. R., & Lyman, C. E. (1989). Crystal symmetry and coherent twin structure of calcium zirconate. *Acta Crystallogr. Sect. B-Struct. Sci.*, 45(3), 218–227. DOI: 10.1107/ S0108768189000856.
- Rossa, N. L., & Chaplin, T. D. (2003). Compressibility of CaZrO₃ perovskite: Comparison with Ca-oxide perovskites. *J. Solid State Chem.*, 172(1), 123–126. DOI: 10.1016/S0022-4596(02)00166-4.
- Stoch, P., Szczerba, J., Lis, J., Madej, D., & Pędzich, Z. (2012). Crystal structure and *ab initio* calculations of CaZrO₃. *J. Eur. Ceram. Soc.*, 32(3), 665–670. DOI: 10.1016/j.jeurceramsoc.2011.10.011.
- Prasanth, C. S., Padma Kumar, H., Pazhani, R., Solomon, S., & Thomas, J. K. (2008). Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO₃ ceramics. *J. Alloy. Compd.*, 464(1/2), 306–309. DOI: 10.1016/j.jallcom.2007.09.098.

- Pollet, M., Marinel, S., & Desgardin, G. (2004). CaZrO₃, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. *J. Eur. Ceram. Soc.*, 24(1), 119–127. DOI: 10.1016/ S0955-2219(03)00122-5.
- Levin, I., Amos, T. B., Bell, S. M., Farber, L., Vanderah, T. A., Roth, R. S., & Toby, B. H. (2003). Phase equlibra, crystal structures, and dielectric anomaly in the BaZrO₃-CaZrO₃ system. *J. Solid State Chem.*, 175, 170–181. DOI: 10.1016/S0022-4596(03)00220-2.
- Serena, S., Sainz, M. A., & Caballero, A. (2009). The system Clinker-MgO-CaZrO₃ and its application to the corrosion behavior of CaZrO₃/MgO refractory matrix by clinker. *J. Eur. Ceram. Soc.*, 29(11), 2199–2209. DOI: 10.1016/j.jeurceramsoc.2009.01.015.
- Dudek, M., & Bućko, M. M. (2003). Electrical properties of stoichiometric and non-stoichiometric calcium zirconate. *Solid State Ion.*, 157, 183–187.
- Dudek, M., & Drożdż-Cieśla, E. (2009). Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate. *J. Alloy. Compd.*, 457, 846–854. DOI: 10.1016/j.jallcom.2008.08.020.
- Hwang, S. C., & Choi, G. M. (2006). The effect of cation nonstoichiometry on the electrical conductivity of acceptor-doped CaZrO₃. *Solid State Ion.*, 177, 3099–3103. DOI: 10.1016/j.ssi.2006.08.002.

- Smith, K. L., Colella, M., Cooper, R., & Vance, E. R. (2003). Measured displacement energies of oxygen ions in titanates and zirconates. *J. Nucl. Mater.*, 321(1), 19–28. DOI: 10.1016/S0022-3115(03)00197-1.
- Muller-Buschbaum, H. K. (2003). The crystal chemistry of AM₂O₄ oxometallates. J. Alloy. Compd., 349(1/2), 49–104.
- 13. Muller, O., & Roy, R. (1974). *The major ternary structural families*. New York: Springer.
- Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst., 2, 65–71. DOI: 10.1107/S0021889869006558.
- Rodriguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder. *Diffr. Phys. B*, 192(1/2), 55–69. DOI: 10.1016/0921-4526(93)90108-I.
- Shannon, R. D. (1976). Revise effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr. Sect. A*, 32, 751–767. DOI: 10.1107/S0567739476001551.
- Tsipis, E. V., Pivak, Y. V., Waerenborgh, J. C., Kolotygin, V. A., Viskup, A. P., & Khortan, V. V. (2007). Oxygen ionic conductivity, Mössbauer spectra and thermal expansion of CaFe₂O₄₋₈. *Solid State Ion.*, *178* (25/26), 1428–1436. DOI: 10.1016/j.ssi.2007.09.003.