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This paper is devoted to the studies of the isotropic 
average of quantities in the momentum space having 
the full symmetry of the Brillouin zone. Such quan-
tities, denoted here as f(p), can be expressed as a 
series of lattice harmonics Fl,(,) of an appropriate 
symmetry [1, 2] 

(1) 

where  distinguishes harmonics of the same order 
and (,) are the azimuthal and polar angles of the 
direction p with respect to the reciprocal lattice 
coordinate system. 

Isotropic distributions f0(p) (f(p) averaged over 
angles (,)) are used in calculating many physical 
properties, e.g. the specifi c heat and Debye tem-
perature [1, 3–7] and density of states in disorder 
systems [8, 9], or (in some particular cases) in 
probing electron momentum densities via angular 
correlation of annihilation radiation (ACAR) [10, 
11], Compton scattering [12–22], and Doppler 
broadening spectra [23]. 

In the previous paper, devoted to the cubic struc-
tures [24], we showed that for calculating the isotro-
pic component, the common procedure of applying 
high symmetry directions (HSD) is the worst choice 
(the same occurs for the anisotropic components). In 
this paper, similar considerations are performed for 
the hcp structure, although obtained results may be 
generalized on all structures with the unique R-fold 
axes. For such structures with R = 6, 4, and 3 (hcp, 
tetragonal, and trigonal symmetry, respectively), the 
lattice harmonics having the full symmetry of 
the Brillouin zone have a very simple form: 
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(1a) 

where Pl
|m| are associated Legendre polynomials and 

a are the normalization constants. 
In Ref. [23], the isotropic f0(p) for the hcp Co 

and Gd was estimated based on 3-HSD ([101–0], 
[112–0], and [0001]). Because, in the hcp lattice, 
the fi rst harmonic, which distinguishes directions 
[101–0] and [112–0], is the fi fth harmonic F6,6, f0(p) 
can be estimated either as the average 

(2) 

or as 

(3) 

where the symbol ‘a’ denotes approximated func-
tion. 

Equations (2) and (3) correspond to the use, 
respectively, of fi rst (l = 0), second (l = 2), fi fth (l = 
6, m = 6) and fi rst (l = 0), fourth (l = 6), fi fth (l = 
6, m = 6) harmonics. The quality of each approxima-
tion can be estimated via d coeffi cients, which defi ne 
a deviation of fa

l,v(p) from its true value fl,v(p) (see 
Eq. (4) in Ref. [24]). In this way, one can show that 
none of the Eqs. (2) and (3) is favorable, which is con-
nected with the fact that harmonics along HSD (fi rst 
of all along [0001]) have very high values – hence, 
corresponding values of d coeffi cients are also high. 

In Figs. 1 and 2, we present f0(p) = f0(p) – f0
a(p) 

estimated for one-dimensional (1D) ACAR spectra 
for Gd, created from two-dimensional (2D) ACAR 
experimental data [25]. Gd was chosen for two rea-
sons: (1) the ineffective approach in Ref. [23] was ap-
plied for Gd; (2) having at disposal sixteen 2D ACAR 
spectra [25], it was possible to determine, with high 
accuracy, each quantity connected with both 1D and 
2D ACAR spectra, so also fully isotropic f0(p). 

f0
a(p) calculated using Eqs. (2) and (3) are com-

pared with f0
a(p) estimated for only two but special 

directions (SDs) 

(4)

determined by two positive zeros (1= 30.55560 and 
2 = 70.12430) of P4(cos), fi rst harmonic omitted 
in Eq. (1). 

In Gd, the highest values of anisotropic compo-
nents fl,(p) are achieved by f6,0(p) and f6,6(p) – see 
Fig. 1 of Ref. [26]. The fact that they are greater 
than those of lower degree (with l = 2 and 4) is not 
unusual – it depends on a particular lattice potential: 
either anisotropy dominates on the planes perpen-
dicular to the main rotation axis (as in Gd or Y [27]) 
or along the main rotation axis (as, e.g., in Cd [28], 
where the largest is f2(p)). Because harmonics fl,0 
along the [0001] direction have very high values, 
growing with l, anisotropy of 1D profi les could be 
very high compared to absolute values of particular 
anisotropic components fl,(p). 

Absolute values of f0(p), estimated for experi-
mental ACAR data for Gd, are of the order of f6,0(p), 
far exceeding values of other fl,(p), which are neces-
sary to be taken into account if one wants to repro-
duce the anisotropy displayed in Fig. 2 (compare it 
with Fig. 1 in [26]). Moreover, a deviation of f0

a(p) 
from the true f0(p) is well seen on the corresponding 
average of 3D density, determined from the Stewart’s 
relation [29] 0(p) = {–(1/p)·[(df0(p)/(dp)]} (see 
Fig. 3, where to avoid a singularity in the expression 
on 0(p), f0(p) was expanded into a series of even the 
Chebyshev polynomials of the second kind). 

Thus, in view of anisotropy, f0(p) has noticeable 
values the more so as (1) used 2D ACAR spectra 
was smeared by both the experimental resolution 
(FWHM = 0.12 a.u.) and electron-electron cor-
relations; (2) creating 1D spectra from 2D data 
(via integrating procedure) introduces additional 
smearing; and (3) results are in percentage of f0(0), 
which contains both valence and core electrons 
(the contribution of core is signifi cantly reduced 
by the presence of the positron but, nevertheless, it 
is noticeable). Moreover, positrons mostly reduce 
the higher momentum components of the electron 
densities, i.e. it decreases the anisotropy). All these 
indicate that for valence electrons, absolute values 
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Fig. 1. f0(p) = f0(p) – f0
a(p) estimated for 3-HSD (Eqs. 

(2) and (3)) and 2-SDs (Eq. (4)). All quantities were con-
structed using 16 experimental 2D ACAR data for Gd [25]. 

Fig. 2. Anisotropy of 1D ACAR spectra for Gd, compared 
with f0(p) obtained from Eq. (2). 
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of anisotropic components fl,(p) (hence, also f0(p)) 
will be much higher. 

Anisotropic components of experimental 1D 
ACAR spectra for Gd are almost identical with those 
for Y (both their shape and values). Thus, in order 
to visualize the importance of a proper determining 
of f0(p), fi rst of all when one performs theoretical 
calculations, in Fig. 4, we show the anisotropy 
of theoretical spectra in Y [27] compared with 
Lam-Platzman correction (LPC), which describes 
electron-electron correlation effects [30]. 

A comparison with the results displayed in Fig. 2 
clearly reveals that in Gd and Y, inaccuracy of deter-
mining the isotropic component f0, based on 3-HSD, 
is of the order of the LPC. Meanwhile, very often 
does one determine f0 to examine the correctness of 
this correction [30], i.e. to study much more subtle 
effects [31]. 

Additionally, a comparison of results presented in 
Figs. 4 and 2 shows how much a resolution function 
of the equipment smoothes anisotropy. Therefore, 
in the case of Doppler spectra, as in Ref. [23], 
the approximations (2) or (3) are able to describe 

the isotropic component. It is not the case for high-
-resolution Compton profi les, while for theoretical 
calculations, such approximations are unacceptable 
– for them, all quantities shown in Fig. 1 would be 
about two times larger. 

Conclusions 

We showed (here for the hcp, previously for the cubic 
structures) that a traditional way of calculating the 
isotropic average using HSD yields incomparably 
worse results than applying SDs [32–35]. The huge 
number of papers in which HSD are used to deter-
mine the average distributions (here only a part of 
such papers was quoted) prove the importance 
of the problem, which is worth more attention. 
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