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  Introduction

The Fukushima accident in Japan in March 2011 
caused severe radioactive nuclear leakage and spread 
to surrounding areas, which had a large-scale impact 
on the environment in a short period of time [1, 2]. 
An important measurement and the key to ensuring 
quality in the environmental radiation monitoring 
of nuclear accidents is the gamma radiation dose 
rate of the ambient surface [3]. The most commonly 
used technical monitoring is vehicle-borne environ-
mental radiation measurement equipment due to 
its high mobility, rapid response, and the ability to 
obtain the distribution data of the environmental 
radiation fi eld. 

Since the beginning of the 1980s, developed 
countries such as the United States, Canada, and Ja-
pan have successfully developed vehicle-borne large-
-volume NaI gamma spectrometer detection systems 
for environmental radiation monitoring, nuclear 
accident emergency, and radioactive source detec-
tion [4, 5].  In recent years, China’s environmental 
protection departments have actively conducted 
capacity building in environmental radiation moni-
toring. Domestic enterprises have also developed 
and produced a number of vehicle-borne radiation 
detection systems to assess the ambient dose rate 
and the dose rates of detected gamma-emitting 
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nuclides. In 2007, the Ministry of Environmental 
Protection issued the “National standards for the 
construction of radiation environmental monitoring 
and supervision institutions”, which included the 
vehicle-borne radioactive detection system as 
the confi guration object [6]. 

After the Fukushima nuclear accident in Ja-
pan, the stationary station nearby was destroyed 
by tsunami and other natural disasters. Thus, the 
vehicle-borne environmental radiation measurement 
equipment has a crucial role in environmental dose 
rate monitoring. The measurement principle of this 
equipment is similar to that of the stationary station. 
The difference is that the former has a strong mobile 
performance than the latter. 

Vehicle-borne radiation detection system has 
been used to measure environmental dose rate [6, 7]. 
However, the use of this system for accurate moni-
toring of the environment and radioactive material 
radiation dose remains a diffi cult problem. The use 
of different measurements for the environmental 
dose value of a point can lead to inconsistent or even 
widely different results. At present, China has not 
released the relevant standards and technical speci-
fi cations for the dose calibration of a vehicle-borne 
spectrometer. This study presents a new method 
to accurately calculate the surface environmental 
dose using vehicle-borne radiation measuring 
equipment. A near-ground reference radiation fi eld 
is built on the basis of the typical radionuclides of 
the Fukushima nuclear accident. The Monte Carlo 
code FLUKA is used to simulate the ambient dose 
under different reference radiation fi elds. All simu-
lated results are converted into air dose 1 m above 
the ground surface, as required by the International 
Commission on Radiological Protection (ICRP 
1996) [8], to establish the dose correction factor 
(CF) for the vehicle-borne radiation environment 
measurement equipment. 

Simulation methods and model construction 
 

The FLUKA code [9] is used to simulate the en-
vironmental dose of vehicle-borne environmental 
radiation measurement equipment in the reference 
radiation fi elds. The incident gamma photons in-
teract with the scintillator material in large-volume 
detectors, and part of the energy of gamma photons 
is deposited in the detector. The energy of gamma 
rays deposited in NaI (Tl) crystals is recorded using 
the USRTRACK card and converted into dose rate. 
The activity of each nuclide is 1 Ci at the initial time 
of all simulation data, and the simulation platform 
is Dell Server Precision T7920, CPU: Intel(R) Core 
(TM) i7-9750H @ 2.6 GHz, RAM 64.0 GB. 

Model construction of vehicle-borne radiation 
environment measurement equipment 

Vehicle-borne  environmental radiation measure-
ment technology measures the type and content of 
radionuclides on the ground and the air-absorbed 

dose rates along the road using the gamma spectrom-
eter mounted on a car [4]. The Monte Carlo code 
FLUKA is used to simulate the ambient dose rate of 
vehicle-borne environmental radiation measurement 
equipment. A schematic of the FLUKA model used 
for simulations is illustrated in Figs. 1 and 2. The 
4 L NaI (Tl) crystal is covered by a 0.5-mm-thick 
MgO refl ector, which is surrounded by aluminium 
with a thickness of 2 mm, and by a layer of 2-mm-
-thick SiO2 on the photomultiplier coupling side. 
Given that NaI (Tl) crystals are susceptible to deli-
quescence, an aluminium box is used to seal them. 
The dry MgO powder between the crystal and the 
aluminium box acts as a refl ective layer to refl ect 
the light emitted in the scintillator in all directions 
to the crystal, and SiO2 can effectively transmit the 
light to the photomultiplier tube. The main compo-
nent of the on-board radiation measurement equip-
ment is a 4 L NaI (Tl) detector mounted on the roof 
(in horizontal placement) of a Cheetah Land Cruiser 
LBA6482LQ4. The point source is assumed to emit 
1.332 MeV gamma rays, and the distance between 
the isotropic gamma-ray point source and the 10 cm 
× 10 cm surface of the NaI (Tl) crystal is 100 cm. 
The intrinsic detection effi ciency of a NaI detector is 
defi ned as the ratio of the number of pulses depos-
ited in the NaI (Tl) crystal to the incident radiation 
source on the surface of the detector. The simulation 
shows that the intrinsic detection effi ciency of NaI 
(Tl) for 1.332 MeV gamma ray is 65.30%. 

The car body structure is simplifi ed to improve 
the effi ciency of simulation calculations. Except 
for the chassis and tires, the car body adopts a box 
structure, while other scattered and lighter parts 
are ignored to simulate the real car to the maximum 

SiO2

NaI(Tl)

MgO
Al

Fig. 1. NaI (Tl) detector model.

Fig. 2. Simulation model of vehicle-borne radiation envi-
ronmental measurement equipment. 
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extent. Table 1 shows the detailed information, such 
as the structure and materials, of each component 
in the studied equipment. 

Construction of a near-ground reference radiation 
fi eld model

A nuclear accident produces a complex radiation 
fi eld composed of hundreds of radionuclides with 
varying distributions over time [10, 11]. Therefore, 
using the traditional ground radiation detection 
method is insuffi cient. In this study, the radiation 
fi eld distribution in the radioactive source area of 
a nuclear accident is simulated using the Monte 
Carlo program by sampling the radiation rays and en-
ergy directions. According to the national standard 
GB/T17982-2018 [12], nuclear accidents are di-
vided into time periods or phases: the early stage 
is the initial moment of decay (nuclear accident); 
the middle stage starts 1 day after the accident; and 
the later stage starts 100 days after the accident. The 
cylindrical source model is used to approximate the 
infi nite radiation fi eld after the nuclear accident, 
as shown in Fig. 3. In the early phase, radioactive 
substances are released into the atmosphere and 
dispersed in the air (Fig. 3a). These radionuclides are 
assumed to be uniformly distributed in the form of 
the plume. The cylinder has a radius of 1000 cm and 
a height of 2000 cm. The entire space is fi lled with 
air, and the radiation fi eld volume is V = 6280 m3. 

In the mid-late nuclear phase of nuclear accidents, 
the radionuclides rapidly deposited in the soil after 
a nuclear accident, and the early radioactive ma-
terials are gradually deposited on the soil to form 
a radiation field of ground radioactive fallout 
(Fig. 3b). Similarly, the cylinder has a radius of 
1000 cm and a height of 2000 cm. The bottom of the 
column is fi lled with a 1-cm-thick layer of soil [13], 
and the air above this surface is used as an air model. 
The soil density [14] is 1.7 g/cm3, and the soil mass is 
M = 4710 kg. Table 2 shows the air and soil content. 

Source term analysis of radiation fi eld 

The consequence assessment and environmental 
radiation monitoring of the Fukushima accident is a 
complex and arduous task, and the source item is an 
important basis for accident classifi cation [15, 16]. 
Numerous researchers of the Fukushima accident 

 Table 1. Detailed information of the structure and materials of each component in the generalized model of vehicle-
-borne environmental radiation measurement equipment 

Structure Material Comp onent Density 
(g/cm3)

Thickness 
(cm)

Vehicle chassis Alloy steel 3.45% C, 96.55% Fe 7.85 10.00

Vehicle tires Rubber 11.84% H, 88.16% C 0.92 –

Carriage

Aluminium skin 100% Al 2.70   0.12
Polyurethane foam 54.4% C, 12.1% N, 33.5% O 0.04 –

Glass 46.0% O, 33.6% Si, 10.7% Ca, 9.7% Na 2.40   1.00
Aluminium alloy 97.43% Al, 1.55% C, 1.02% Cu 2.80  3.76

Detector crystal

Sodium iodide 15.34% Na, 84.66% I 3.67 –
Magnesium oxide 39.7% O, 60.3% Mg 2.58   0.05

Aluminium 100% Al 2.70   0.20
Silicon dioxide 53.2% Si, 46.8% O 2.32   0.20

Table 2. Mass fraction percentage of main components 
of air and soil

Air

  C N O Ar
0.02 75.50 23.20 1.28

Soil

  H O Al Si Fe
6.67 48.33 18.00 22.50 4.50

Fig. 3. Reference radiation fi eld model: (a) early radiation fi eld and (b) mid-late radiation fi eld. 

(a) (b)

h = 2000 cm

h0 = 1 cm 

h = 2000 cm

D = 2000 cm  D = 2000 cm  
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assess the total amount of radioactive materials 
released into the atmosphere to evaluate the environ-
mental impact [16–20]. However, in daily training, 
nuclear emergency equipment is used in a radia-
tion fi eld environment formed by a single nuclide. 
For this reason, this study specifi cally selects fi ve 
representative radionuclides released after nuclear 
accidents (Table 3) as a single-nuclide reference to 
study the distribution of radiation fi elds in the early 
phases of nuclear accidents [16]. 

The Fukushima accident released various types 
of characteristic radionuclides. However, simulta-
neous analyses of the natural radionuclides in the 
environment are necessary considering the back-
ground effect. Table 4 shows the selected nuclides 
required for the background reference radiation fi eld 
in the “ 2018 Annual Report of the National Radia-
tion Environment” [21]. The aerosol activity is the 
air model for the early radiation fi eld and the soil 
activity is the soil model for the mid-late stage. The 
complex radiation fi eld distribution composed of 
hundreds of nuclides is affected by various factors, 
such as meteorological and geological conditions. 
The source term distribution of radiation fi eld needs 
to be obtained from a specifi c time and location. 
Thus, this study uses the nuclide data during the 
Fukushima accident as the source term of the mixed 
reference radiation fi eld. 

Tables 5 and 6 include the main nuclides, ra-
dioactive concentration, and activity of the mixed 
reference radiation fi eld in the early and middle 
phases of the Fukushima accident, respectively. The 
radioactivity calculation of the nuclides in the refer-
ence radiation fi elds is shown in Eqs. (1) and (2). 

(1)     A1 = C1 × V 

(2)     A2 = C2 × M

where A is the radionuclide activity, C is the ra-
dionuclide concentration, 1 and 2 are the different 
reference radiation fi elds, V is the volume of the early 
air reference radiation fi eld, and M is the mass of the 
mid-late soil reference radiation fi eld. 

 
Vehicle-borne radiation system measurement 

When different measuring platforms are used to 
assess the ground deposition of nuclides, all mea-
surement results must be corrected to maintain data 

consistency from the different material structures 
and placement height of the measuring instrument 
[22, 23]. In this study, the detector is installed on 
the top of the car, parts of the ambient gamma rays 
are shielded by the body material, and the height 
attenuation caused by the detection equipment af-
fects the measurement results. Therefore, CF needs 
to match the dose measured by the vehicle-borne 
radiation ambient measurement equipment with 
the air dose. The Monte Carlo simulation is used to 
study the air absorption dose rate detected by NaI 
(Tl) detection crystal at two positions inside and 
outside the vehicle. Thus, the dose CF is established, 
as shown in Eq. (3). 

(3) 

where CF is the dose CF of the measured dose in 
the vehicle-borne radiation measurement equipment 
and D

.
car and D

.
air are the air absorption dose rates 

measured by the detector mounted on the car roof 
in the car and 1 m above the ground in the air, re-
spectively. Under the same conditions, the simulated 
detector is placed on the car roof at different dose 
rates to verify the dose CF. In the end, the air dose 
rate at 1 m above the ground can be obtained by ap-
plying the dose attenuation CF to the vehicle-borne 
radiation dose measurement, as shown in Eq. (4). 

(4)

where D
.

1m is the ambient dose rate at 1 m above the 
ground and D

.
car is the ambient dose rate measured 

by the vehicle-borne radiation measurement equip-
ment. 

Results and discussion 

Ambient dose rate of the single-nuclide reference 
radiation fi eld 

The Monte Carlo program is used to simulate the dose 
rate of 60Co, 131I, 132Te, 133Xe, and 137Cs radionuclides 
with activity of 1 Ci in the early reference radiation 
fi eld, as shown in Fig. 4. The ambient dose rate in-
creases exponentially with the increase in radionu-
clide energy in the single-nuclide reference radiation 
fi eld. In determination radionuclide activity, the dose 
rate change is only related to nuclide energy. 

Table 3. Representative nuclides in single-nuclide reference radiation fi eld 

Nuclides 60Co 132Te 137Cs 131I 133Xe

Half-life 5.27 a 76.80 h 30.07 a 8.02 d 5.25 d
Gamma energy (keV) 1173.24, 1332.50 228.16 661.66 364.49 81.00

Table 4. Environmental background composition of the reference radiation fi eld 

Distribution Aerosol Soil

Nuclides 7Be 40K 137Cs 210Pb 137Cs 226Ra
Energy (keV) 477.61 1460.83 661.66 46.54 661.66 186.21
Background (Bq) 5.66 × 101 2.36 × 100 1.37 × 10−2 2.84 × 101 3.91 × 105 2.98 × 104

car

air

CF D
D

 
  
 




car
1m CF

D
D 
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Table 7 shows the ambient dose rates at the 
calibration locations. The rates range from 2.8 × 
10–5 Gy/s to 1.7 × 10–2 Gy/s as measured at 
the height of 1 m above the ground, and the rates 
range from 2.5 × 10–5 Gy/s to 1.5 × 10–2 Gy/s as 
measured by the detector at the car roof. Under the 
same conditions, the trends of environmental dose 
rates detected by the NaI (Tl) detector inside and 
outside the vehicle are roughly the same. The dose 
rate measured outside is larger than that measured 
by the vehicle-borne detector because of the shield-
ing effect of the vehicle and its contents. 

Ambient dose rate of mixed-nuclide reference 
radiation fi elds 

Tables 5 and 6 show various radionuclides and 
activity in the mixed-nuclide reference radiation 
fi elds. For the early phase of nuclear accidents, this 
study considers 2 h as the step length. For the mid-
-late stage, 100 days as a time node is used to cal-
culate 12 different periods (1 day, 3, 5, 7, 9, 11, 13, 
20, 40, 60, 80, and 100 days) to obtain the change 
curve of atomic number and activity of the radio-
active decay progeny, as shown in Fig. 5. The ra-
dionuclide activity in two different reference fi elds 
decreases exponentially over time. The results show 
that these decreases are not related to the radiation 
fi eld model but only related to the decay constant. 

Figures 6a and 6b show the trend of changes in 
the environmental dose rate measured by the NaI 
(Tl) detector inside and outside of the vehicle, re-
spectively. In this study, the early reference radiation 
fi eld is the air body source, and the air absorption Ta
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Fig. 4. Trend of ambient dose rate with gamma energy in 
the single reference radiation fi eld. 

Table 7. Dose rates measured at the height of 1 m above 
the ground and at the car roof of single-nuclide radiation 
fi eld (Gy/s) 

Nuclides Energy 
(keV)

Car 
(Gy/s)

Air 
(Gy/s)

133Xe     81.00 2.5149 × 10–5 2.8241 × 10–5

132Te   228.16 6.8513 × 10–4 7.8970 × 10–4

131I   364.49 2.4188 × 10–3 2.7888 × 10–3

137Cs   661.66 7.0965 × 10–3 8.1073 × 10–3

60Co 1173.24, 1332.50 1.5559 × 10–2 1.7436 ×  10–2
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dose rate is evaluated to only consider the shielding 
effect of the car body. Thus, the dose rates inside and 
outside the vehicle slightly differ. By comparison, 
the mid-late reference radiation fi eld is the soil body 
source, and the NaI (Tl) detector is placed on the 
roof, which essentially increases the source range. 
Thus, the NaI (Tl) detector receives a large differ-
ence in the ambient dose rate inside and outside 
the vehicle. The dose rate changes less and tends 
to fl atten due to the long half-life and slow decay of 
certain radionuclides, such as 137Cs. 

Correction factor of the single-nuclide reference 
radiation fi eld 

By convention, the ICRP 1996 [9] stipulates mea-
surement of ambient dose rate at 1 m height to en-
sure consistent results when using different vehicle 
radiation measurement systems. In this study, only 
the shielding effect of the car body and the infl u-
ence of the detector distance from the ground are 
considered to evaluate the air absorption dose rate. 
The CF of the vehicle-borne radiation environment 
measurement equipment under different radiation 
fi elds can be obtained using Eq. (3). 

The ambient dose rate of the single-nuclide ref-
erence radiation fi eld is simulated using the Monte 
Carlo program. Table 8 shows the results of the dose 
CF obtained by Eq. (3). The mean dose CF is 0.8786, 

and the error is within 2%. The results show that 
energy change negligibly affects the dose CF. 

Correction factor of the mixed-nuclide reference 
radiation fi eld 

The dose CF of the mixed-nuclide reference radia-
tion fi eld using the vehicle-borne environmental ra-
diation measurement equipment is listed in Tables 9 
and 10. The early reference fi eld CF is regarded as a 
fi xed value of 0.8830, and the mid-late mixed-nuclide 
reference fi eld dose CF fl uctuates at approximately 
0.6711. The dose rate measured by the vehicle-borne 
equipment is applied to 1 m above the ground in air 
using Eq. (4). 

Effects of detector position 

The dose rate measurements are repeated at several 
locations with different ambient dose levels and 
detector installation locations to verify the validity 
of the dose CF. Table 11 shows the average results 

0 5 10 15 20 25
5.5×107

6.0×107

6.5×107

7.0×107

7.5×107

8.0×107

Ac
tiv

ity
 (B

q)

Time (h)
0 20 40 60 80 100

7.5×108

8.0×108

8.5×108

9.0×108

9.5×108

1.0×109

Ac
tiv

ity
 (B

q)

Time (d)
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Table 8. Dose CF of single-nuclide reference radiation fi eld

Nuclides 133Xe 132Te 131I 137Cs 60Co

CF 0.8905 0.8676 0.8673 0.8753 0.8923
CF, correction factor.  

a

a

b

b
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of the detector placed at different positions. The 
data are divided into dose rate and CF according 
to Eq. (3). 

Conclusion 

This study establishes a near-ground reference ra-
diation fi eld based on typical radionuclides of the 
Fukushima accident as the source term data. The 
Monte Carlo program simulation is used to study 
the environmental dose of vehicle-borne environ-
mental radiation measurement system. The dose CF 
is established by simulating the ambient dose rate 
of the Cheetah Land Cruiser LBA6482LQ4 with 
a 4 L NaI (Tl) detector in the early and mid-late 
reference radiation fi elds of nuclear accidents. The 
main conclusions are as follows: 
1. In the early reference radiation fi eld, the radionu-

clides are uniformly distributed in the air, the ambi-
ent dose rate is only related to the vehicle material 
structure, and the average dose CF is 0.8813. 

2. In the mid-late reference radiation fi eld, the ambi-
ent dose rate is highly correlated with the body 
material structure and the height of the detector 
from the surface under the assumption that radio-
nuclides all sank to the surface to form soil body 
source. The average value of the environmental 
dose CF is 0.6711. 

3. The results of the ambient dose CF are indepen-
dent of the detector position, but this case is only 
in the established reference radiation fi eld. 
This  paper presents the study of the dose cor-

rection method for the monitoring process. The dy-
namic measurement of this process will be presented 
in a subsequent paper. 
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