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Introduction

Most of the nuclear power reactors operate on the 
basis of cycles that involve periodically replacing 
part of the fuel to introduce additional reactivity to 
compensate for the loss of fi ssile material and the 
creation of fi ssion products. In a new cycle, some of 
the assemblies with high burnup are replaced with 
the fresh ones, and some of the old assemblies are 
set in a new confi guration (the so-called shuffl ing). 
This process requires reactor shutdown and opening 
the vessel, which results in enhanced costs due to 
operations and interruption in power production. 
The selection of the fi rst core loading pattern and 
further shuffl ing schemes are therefore important in 
terms of the economy of the core’s operation [1, 2]. 

The core usually contains several hundred fuel 
assemblies that differ in their isotopic composition, 
enrichment, amount of burnable absorbers (BAs), 
and/or other parameters, which may additionally 
vary with time. For a typical pressurized water re-
actor (PWR), the number of fuel assemblies used 
is in the range of 120–250 [1]. Assuming only 10 
different types of assemblies and 200 of them in the 
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Abstract. The study demonstrates an application of genetic algorithms (GAs) in the optimization of the fi rst 
core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor 
(PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to 
perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems 
such as core geometry optimization and fuel confi guration. In many cases, however, these analyses focused on 
optimizing only a single parameter, such as the effective neutron multiplication factor (keff), and often limited to 
the simplifi ed core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose 
fi tness function (FF) and allow the optimization of more than one parameter at the same time, and these were 
applied to a realistic full-core problem. The main parameters of interest in this study were the total power peak-
ing factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics 
by fi nding longer fuel cycle with more uniform power/fl ux distribution. Proper FFs were developed, tested, and 
implemented and their results were compared with the reference BEAVRS fi rst fuel cycle. In the two analysed 
test scenarios, it was possible to extend the fi rst fuel cycle while maintaining lower or similar PPF, in comparison 
with the BEAVRS core, but for the price of increased initial reactivity. 
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core (20 for each type), one can get 200!/(10 · 20!) 
 10355 possible confi gurations. Finding the optimal 
core fuel loading scheme is, therefore, an extremely 
complex problem and requires a special approach. 

One of the possible techniques for solving the 
above problem may be the use of genetic algorithms 
(GAs). GAs are optimization tools based on genet-
ics and Darwin’s theory of evolution [2, 3]. GAs 
are based on a population of encoded chromosomes 
(set of characters) containing information about the 
optimized system. These chromosomes evolve over 
time and approach the optimal solution. Due to the 
use of random elements (mutation, crossing), GAs 
are resistant to get stuck within a local optimum, 
which is a signifi cant advantage in solving complex, 
multidimensional problems. 

GAs have been successfully used in many fi elds, 
such as pattern recognition, data mining, and image 
processing [4]. Additionally, they were also used 
in the fi eld of nuclear engineering. In the available 
literature, loading pattern [1], core design [5, 6], BA 
arrangement [7, 8], online refueling [9], and thorium 
loading [10] were considered. However, due to the 
required computing power, these optimizations were 
typically simplifi ed and focused on one parameter 
or used signifi cantly simplifi ed models. 

Genetic algorithm 

GA operates on generations of chromosomes (usu-
ally 50–100 per population) for which three main 
genetic operators are used: selection, crossover, and 
mutation [2, 3]. 

Selection is related to the assessment of the chro-
mosome. For this purpose, a fi tness function (FF) is 
defi ned, which is to be maximized during the opera-
tion of the algorithm. Based on the FF value, chromo-
somes are selected for further GA steps. In general, 
the higher the FF value, the greater the probability of 
that chromosome to survive. Crossover is the process 
of gene exchange between chromosomes. Usually, 
two chromosomes (parents) are selected randomly; 
they exchange subarrays between each other and 
create new specimens (offspring). Mutation involves 
random replacement of a given gene with another. 

In this study, the chromosome is defi ned as 1/4 
of the PWR core containing a set of numbers that 
refl ects the current confi guration of the core (Fig. 1). 
The algorithm operates on 1/4 of the confi guration 

and then mirrors it symmetrically to build the whole 
core. The assumption of symmetry allows a signifi -
cant reduction in the number of possible solutions 
and decreases the time needed for optimization. 

PWR core model 

In this work, the 1000 MWe PWR defi ned in MIT 
BEAVRS benchmark was applied [11]. The fi rst 
fuel cycle core design is presented in Fig. 2, and we 
limited the choice of fuel assemblies to nine types 
which were present during this cycle. It covers fuel 
assemblies with enrichment of 1.6%, 2.4%, and 3.1% 
and the number of BA rods per assembly equals 0, 
6, 12, 15, 16 or 20. BAs, made of borosilicate glass, 
are placed in control rods guide tubes in assemblies 
without control rods. Neutronic calculations were 
performed with the PARCS core simulator [13, 14]. 
The model, validation, and test details are described 
in [15], and core defi nition and detailed design are 
available in benchmark defi nition document [11]. 

Power peaking factor 

In this work, we have introduced the PPF into our 
algorithm and FFs, as it was not studied in our previ-
ous research [12]. It is the parameter that describes 
quantitatively the uniformity of the heat sources 
(also neutron fl ux) in the core [16]. The total nuclear 
PPF is defi ned by Eqs. (1) and (3) [15]. 

(1)

and it can be divided into radial and axial parts: 

(2) 

Fig. 1. Chromosome representing 1/4 of the optimized 
core. 

Fig. 2. The BEAVRS core loading pattern for Cycle 1 
(based on [12]).

max heat flux in the corePPF
average heat flux in the corexyzP 

average heat flux of the hot channel      
average heat flux of all channels
max heat flux of the hot channel       

average heat flux of the hot channel

xyz xy zP P P







149Optimization of the loading pattern of the PWR core using GAs and multi-purpose fi tness function 

(3)

where NC is the number of cooling channels, H is the 
active height of the core, and rHC  is the location of 
the hot channel. The hot channel is defi ned as the 
channel with highest heat fl ux and enthalpy rise [17]. 

In the PARCS code [13, 14], the neutronic solu-
tion is based on large nodes with XY dimensions 
similar to assemblies 20 cm × 20 cm × 20 cm. The 
so-called pin-power reconstruction is necessary to 
fi nd detailed location of hot channels. In this work, 
this approach was not applied, as it is beyond the 
scope of this study. The code estimates hot channel 
on the basis of the available nodalization and an as-
sembly is treated as a single cooling channel in the 
context of Eqs. (1)–(3). The PARCS calculates all 
peaking parameters, but in this report we focused 
on the optimization of the total PPF only. 

Typically the PPF should be minimized to avoid 
large discrepancies in neutron fl ux/power between 

different parts of the core, both radially and axially. 
Lower PPF will lead to more uniform fuel depletion 
and uniform coolant temperature distribution both 
in axial and radial directions, which can lead to more 
economical use of the fi ssile material in the core. 

Simulations 

Two simulations were performed and a reference 
BEAVRS calculation. The fi rst one applies the algo-
rithm using a simplifi ed form of FF. In this part, the 
only goal of the algorithm was to minimize the PPF 
that determines the non-uniformity of the power dis-
tribution. Thus, the FF took a simple form (Eq. (4)): 

(4)       FF1 = 1/PPF 

where PPF is given by using Eq. (3). 
In the second part, it was decided to use multi-

-purpose FF and optimize two parameters of the 
core’s operation: PPF and cycle length. Therefore, 
the goal was also to minimize the PPF, but at the 
same time, extend the length of the cycle. In this 
part, FF took the form (Eq. (5)): 

(5)      FF2 = d/PPF

where d is the length of the given cycle (days). 
For each of the FFs, 500 generations containing 

100 chromosomes were performed (50 000 simula-
tions in total). The mutation level in both cases was 
2%. Figure 1 shows the relative change in the FF 
over generations. 

From Fig. 3, one can see that FF increases very 
fast at the beginning of the simulation; then, the 
changes are smaller. After about 300 steps, regard-
less of the case, the FF reaches a maximum value. 
Then, due to the mutation, the algorithm does not 
converge to a specifi c value but oscillates around it. 

Results 

As a result of the simulations, two optimized core 
confi gurations were obtained containing fuel as-
semblies from the BEAVRS benchmark. Figure 4 
shows a comparison of the obtained confi gurations 
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Fig. 3. Relative change of FF over generations for cases 
1 and 2. 

Fig. 4. BEAVRS core confi guration (a), and optimal confi gurations obtained for Case 1 (b) and Case 2 (c). 

     d = 333.6 days, PPFmax = 1.88                d = 451.7 days, PPFmax = 1.82             d = 512.5 days, PPFmax = 1.89

   (a)           BEAVRS                            (b)            Case 1                             (c)            Case 2
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(Figs. 4b,c) with the BEAVRS core confi guration 
(Fig. 4a). One can see that assemblies with greater 
enrichment are arranged at the edges of the core 
for each confi guration to minimize the fall of the 
flux at the outer boundary. Then in the center 
are alternately arranged assemblies with different 
enrichments but usually containing a greater amount 
of burnable absorber (BA) rods to fl atten the dis-
tribution of the fl ux in the central part of the core. 

The characteristics of the obtained confi gurations 
and the BEAVRS core are presented in Table 1. It 
contains an indicator of the amount of fi ssile mate-
rial used (the average enrichment calculated as the 
sum of the enrichments in the assemblies divided 
by their number), the number of BA rods, the initial 
keff, the maximum value of PPF throughout the cycle 
(PPFmax), and the length of the cycle. 

As the parameter optimized for both cases 
of the algorithm’s operation was PPF, it was decided 
to plot the normalized radial power distribution at 
the beginning and end of the cycle (EOC) for the 
BEAVRS and the cores obtained by the algorithm 
(Fig. 5a–f). 

As can be seen from Fig. 5, the power distribu-
tion for BEAVRS is characterized by an initial peak 
in the center of the core that spreads at the EOC 

towards the outer boundary. The maximum value of 
Pxy is 1.33 at the BOC and 1.21 at the end. In Case 1 
and Case 2 confi gurations, the higher Pxy values are 
spread throughout the core, resulting in relatively 
fl atter power distribution. In Case 1, the maximum 
value of Pxy is 1.26 for both the beginning and the 
EOC. For Case 2, the maximum initial Pxy is 1.34, 
which drops to 1.17 at the EOC. 

Conclusions

As part of the study, two optimizations were per-
formed, the fi rst of which aimed at minimizing the 
PPF and the second at minimizing the PPF, while ex-
tending the fuel cycle. As a result of the simulations, 
two confi gurations were obtained, both character-
ized by a longer fuel cycle compared to the original 
confi guration. In Case 1, the maximum PPF value 

Fig. 5. Radial power distribution (normalized to average) at the BOC and the EOC for the BEAVRS core (a, d), Case 1 
core (b, e) and Case 2 core (c, f). 

Table 1. Characteristics of the obtained confi gurations and the BEAVRS core

Average enrichment 
(%)

No. of BA 
rods

Initial 
keff

PPFmax
Cycle length 

(days)

BEAVRS 2.36 1268 1.08 1.88 333.6
Case 1 2.76 1392 1.13 1.82 451.7
Case 2 2.78 1356 1.13 1.89 512.5

Table 2. The maximal Pxy values for the BEAVRS core, 
Case 1 and Case 2 for BOC and EOC 

BEAVRS Case 1 Case 2

Pxymax BOC 1.33 1.26 1.34
Pxymax EOC 1.21 1.26 1.17

(a)         BEAVRS BOC                     (b)           Case 1 BOC                      (c)           Case 2 BOC 

(d)  BEAVRS EOC (331 days)         (e)  Case 1 EOC (451 days)             (f)     Case 2 EOC (511 days) 
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was reduced from 1.88 to 1.82 and the cycle was ex-
tended by 118 days. In Case 2, a slightly higher PPF 
(1.89) was obtained, while the cycle was extended 
by 179 days. Of course, other core parameters have 
also changed. The cores in Cases 1 and 2 use more 
fi ssile material (average enrichment 2.76% and 
2.78% vs. 2.36% in the original confi guration) hence 
also have a higher initial keff (both 1.13 vs. 1.08). 
However, all the cores use a similar number of BA 
rods (around 1300). The larger fi ssile inventory was 
the main reason of longer cycles in comparison to the 
BEAVRS core. Additional constraints with bounding 
keff or fi ssile mass will be studied in future research. 

The above-mentioned examples show the suc-
cessful operation of the algorithm. As part of the 
simulations, it was possible to optimize the objec-
tives included in the multi-purpose FF, i.e., fl attening 
the power distribution and extending the cycle. To 
propose a comprehensively optimized confi guration 
that could be used in a nuclear power plant, future 
simulations may include more extensive FFs that 
would take into account other constraints such 
as maximum average enrichment, acceptable keff 
range, control rods worth, and/or other parameters, 
optimizing the core using many objectives at the 
same time. 
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